Library
of the
University of Toronto
99 plates
2 by Miss Jane Mancet
also inscribed to Elizabeth and
Sarah Tetton
James Dalton.

Given by his affectionate grand
father, the Rev. James Dalton,
London:
Printed by A. Spottiswoode,
New-Street-Square.
The object of the following pages is to enable children and young persons to acquire a knowledge of the vegetable productions of their native country, by introducing to them, in a familiar manner, the principles of the Linnæan system of Botany.

For this purpose, the arrangement of Linnaeus is briefly explained; a native plant of each class, with a few exceptions, is examined, and illustrated by an Engraving; and a short account is added of some of the principal foreign species.

It is not without regret, that the classification of Linnaeus has been in part relinquished, in order to conform to that adopted by Dr. Withering, who has distributed the plants of four of the Linnæan classes—Gy-
nandria, Monoecia, Dioecia, and Polygamy,—among the preceding classes, according to the number of their stamens; his valuable "Arrangement of British Plants" being at present one of the best works of reference upon this subject, for persons unacquainted with Latin. Sir James Edward Smith's English Flora furnishes to the English reader a systematical account of all our native plants, according to the original method of Linnaeus.

What Miss Edgeworth has said of Chemistry, may with equal truth be applied to Botany, and may serve to recommend the study of it, as a branch of general education:—"It is not a science of parade, it affords occupation and infinite variety, it demands no bodily strength, it can be pursued in retirement;—there is no danger of its inflaming the imagination, because the mind is intent upon realities. The knowledge that is acquired is exact; and
the pleasure of the pursuit is a sufficient reward for the labour." *

It may be due to the author of the admirable "Conversations on Chemistry," to mention, that the title of the present volume was chosen, because it was the only one that seemed to be adapted to the nature of the subject, which had not been appropriated by preceding writers.

* "Letters for Literary Ladies," 3d edit. page 60.
CONTENTS.

List of the Plates - Page xii
Explanation of the Table of the Classes, Plate 2. xiv
Pronunciation of the Latin Names of Plants xvii

CONVERSATION THE FIRST. Page 1.

CONVERSATION THE SECOND. Page 9.
Linnæan Arrangement of Plants. — Classes. — Alterations adopted by Dr. Withering. — Orders. — Genera. — Species.

CONVERSATION THE THIRD. Page 19.
CONVERSATION THE FOURTH. Page 30.

CONVERSATION THE FIFTH. Page 45.

CONVERSATION THE SIXTH. Page 59.

CONVERSATION THE SEVENTH. Page 70.

CONVERSATION THE EIGHTH. Page 81.
CONTENTS.

CONVERSATION THE NINTH. Page 98.

CONVERSATION THE TENTH. Page 114.

CONVERSATION THE ELEVENTH. Page 123.

CONVERSATION THE TWELFTH. Page 139.

CONVERSATION THE THIRTEENTH. P. 161.

Class 14. Didyna’mia. — Natural Orders.— Glecho’ma hedera’cea, Ground Ivy, examined. — Leaves. — Other Plants of this Class.— Honey Flower.— Foreign Trees. — Situation and Distribution of Plants. — Effects of Climate, and of Light.

CONVERSATION THE FOURTEENTH. P. 177.

CONVERSATION THE FIFTEENTH. Page 190.

CONVERSATION THE SIXTEENTH. Page 205.

Class 19. Syngene'sia. — Structure of a Compound Flower. — Aggregate Flower. — Natural Character of this Class. — Calyx, Seeds, and Down. — Orders. — Bel'lis peren'nis, common Daisy, examined. — Other Plants of this Class.

CONVERSATION THE SEVENTEENTH. P. 216.

CONVERSATION THE EIGHTEENTH. P. 229.

Explanat ion of the Botanical Terms made use of in this volume — — — Page 245
General Index — — — Page 263

* A 6
LIST OF THE PLATES.

<table>
<thead>
<tr>
<th>Class</th>
<th>Time of Flowering</th>
<th>To face page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Parts of a Flower</td>
<td>-</td>
<td>6.</td>
</tr>
<tr>
<td>2. Table of the Classes</td>
<td>-</td>
<td>12.</td>
</tr>
<tr>
<td>4. Anthoxanthum odoratum, sweet-scented Vernal Grass</td>
<td>II. May, June.</td>
<td>29.</td>
</tr>
<tr>
<td>7. I’lex Aquifolium, common Holly</td>
<td>IV. May, June.</td>
<td>47.</td>
</tr>
<tr>
<td>8. Myosotis palustris, Water Mouse-ear</td>
<td>V. April, Aug.</td>
<td>64.</td>
</tr>
<tr>
<td>9. Galanthus nivalis, Snowdrop</td>
<td>VI. Feb. April.</td>
<td>82.</td>
</tr>
<tr>
<td>12. Agrostemma Githago, Corn-Cockle</td>
<td>X. June, July.</td>
<td>117.</td>
</tr>
<tr>
<td>15. Papaver Rhoeas, common red Poppy</td>
<td>XIII. June, July.</td>
<td>140.</td>
</tr>
</tbody>
</table>
EXPLANATION OF PLATE 2.

Class	Time of Flowering	To face page
17. Cheiran'thus Chei'ri, common Wall-Flower | - | XV. April, July. 179.
22. Cryptogamic Plants | XXIV. | 230.

The two parts of Plate 2. are to face each other.

EXPLANATION OF THE TABLE OF THE CLASSES.—PLATE 2.

This Plate represents the flower of a native plant, in each of the twenty-four classes; viz.

Class 1. A Flower of the Hippu'ris vulga'ris, common Mare's-tail, slightly magnified. — May, June.

* a
Class 2. A Flower of the Veroni'ca officinalis, common Speedwell, magnified. — May, July.

3. —— Valeriana officinalis, great wild Valerian, magnified. — June, July.

4. —— Cornus sanguinea, wild Cornel-tree. — June, July.

5. —— Polemonium caeruleum, Greek Valerian. — May, July.

6. —— Scilla bifolia, two-leaved Squill. — February, April.

7. —— Trientalis Europaea, Chickweed Winter-green. — May, June.

8. —— Chlorella persoliatata, yellow Centaury. — June, August.

10. —— Saxifraga stella ris, hairy Saxifrage. — June, July.

12. —— Prunus insititia, Bullace Plum. — April.

13. —— Chelidonium majus, common Celandine. — April, October.

15. —— Cardamine pratensis, common Cardamine. — April, May.

17. ——— Genis’ta tincto’ria, Dyer's Greenweed.—June, August.

18. ——— Hyper’icum pul’chrum, upright St. John's Wort. — July.

20. ——— Or’chis mas’cula, early purple Or-chis. — April, May.

21. A Spike of Flowers of the Ca’rex pulica’ris, Flea Sedge; with two flowers magnified; one having stamens only, the other only a pistil. — June, July.

22. Two Catkins, from different plants, of the Sa’lix argen’tea, silky sand-Willow; one bearing flowers with stamens, the other with pistils; with a single flower of each kind magnified. — May.

23. A spike of Flowers of the At’riplex pat’ula, spreading Orache; with two flowers of different kinds, magnified. — June, September.

In this genus, which is the only native one of the class Polygamia, none of the flowers have stamens only.

24. A small specimen of a Fern, Asple’nium Trichomæ’nes, common Maiden-hair; and of a Moss, Hyp’num taxifo’lium. Yew-leaved Feather Moss, both of the natural size. — October, and through the winter months.
PRONUNCIATION
OF THE
LATIN NAMES OF PLANTS.

It will be necessary for persons unacquainted with the Latin language, to observe the following rules, in pronouncing the botanical names of plants:

1. The letter E, at the end of a word, is always to be sounded; for example, the word GA'LE is to be pronounced as if composed of two syllables, GA'-LE: and not like the English word Gale.

2. When the letters C and H come together, they are to be pronounced hard, like K. Thus, LI'CHEN, is pronounced LI'KEN.

3. When the vowels A and E, O and E, or E and I, occur together, if not marked with two dots placed over them, as in DABO'BCIA, pronounced DA-BO-E-CIA, they are to be pronounced as one sound. Thus, Cratae'gus, is to be pronounced Cra-te'-gus.

Cheiran'thus - - Ki-ran'-thus—
 with the I long, like the word Eye.

4. In words that end in -IDES, the I is always to be pronounced long, like the word Eye;—eye-des; thus LICHE'NÖIDES is to be pronounced LIKEN-O-EYE-DES.

The termination -oides, which is sometimes added to other words, is derived from the Greek word eidos, which signifies form, resemblance, figure.

In this volume, wherever the accentuation of the Latin name or terms is not obvious, they are divided and marked, as they are to be pronounced; and the accent, or force of the voice, is to be thrown upon the syllable which precedes the mark. Thus, Ar'butus, is to be pronounced AR'butus, not ARBU'tus. Veroni'ca - . VeroNI'ca, not VerON'ica.
CONVERSATIONS
ON
BOTANY.

CONVERSATION THE FIRST.

BOTANY IN GENERAL.—LINNÆUS.—USES OF BOTANY.
—PARTS OF A FLOWER.

EDWARD.

What are you doing, mamma?

MOTHER.

I am examining the pretty little yellow flower, that we found this morning in the hedge.

EDWARD.

How do you examine a flower?

MOTHER.

You cannot understand the method, my dear, until you have learned something of Botany.
What is Botany?

Mother.

It is the science that makes us acquainted with plants, and teaches us how to distinguish them from one another. The term Botany is derived from a Greek word signifying an herb or grass.—Do you not recollect what your aunt and I were talking of yesterday in the garden? I thought you seemed attentive to our conversation.

Edward.

You said something about a very industrious man, who had examined a great many plants.

Mother.

Yes:—we were speaking of Linnaeus, a celebrated botanist, who did so much to increase our knowledge of the works of nature, that he was called the Father of Natural History. He was born in Sweden, in the year 1707.

Edward.

Am I too young to learn botany? I think I should like it very much.

Mother.

By no means, my dear. It is so simple a study, that the youngest persons can understand it, when
the principles are properly explained to them; and if you like, I will teach you all I know of it. Linnaeus himself was scarcely four years old, when he heard his father describing to a friend some flowers, which he had just gathered from the turf where they sat. This first botanical lecture made such an impression upon him, that, afterwards, he used to ask his father the names and properties of all the plants he could procure: and even at that early age, he began to attend to the habits and distinctions of animals and insects also.

EDWARD.

What is the use of botany?

MOTHER.

You are not yet old enough to understand all its uses, but I will endeavour to tell you some of them. You will be surprised to learn the variety of purposes to which plants are applied: they form the principal part of our food, medicine, clothing, and furniture; and several of the most beautiful dyes are obtained from them. But in some instances the different kinds resemble each other so nearly, that ignorant persons have often mistaken those which are hurtful, or of no value, for the useful ones. Some animals are guided by an instinct that teaches them what plants to choose and what to avoid: but men must have recourse for this pur-
pose to their own experience, or to the observations of others; and without a knowledge of botany, we could neither understand the descriptions given by other persons, nor describe them ourselves so as to be understood. As an amusement, Botany has many recommendations: it may be studied with less expense than most other sciences; it invites us into the country, and increases the pleasure of every walk: and the cultivation of plants in the garden affords one of the most innocent and healthful occupations that we can enjoy.—Indeed, the study of natural history in general is so attractive, that those who once engage in it seldom give it up. The sameness of most other pursuits becomes at last fatiguing; but the naturalist meets with endless variety; and at every step he discovers beautiful contrivances in the works of nature, which escape the attention of common observers.

EDWARD.

But when do you think I shall be able to examine a plant as you do now? Is it very difficult?

MOTHER.

At first it may appear so to you: but do not be frightened; you will soon find that it is not a great undertaking. Nothing is required but to have patience; — to begin at the beginning: after
that your progress will be easy, and you need not go any farther than you choose. An indolent person, it is true, can never expect to become a good botanist, nor, indeed, to excel in any thing. When Linnaeus was about to publish one of his most celebrated works*, he examined the characters of eight thousand flowers: so that you may judge how very industrious he must have been. If you are attentive, and try to remember what I shall tell you, I think that at the end of a month you may be able to examine the flowers you meet with in your walks, without my assistance.

EDWARD.

I long to begin!—Will you take a walk with me to-morrow in the fields, to bring home some flowers?

MOTHER.

With pleasure, my dear; I am very glad to see you so eager to begin this delightful study. But before we set out, you had better learn the names of the different parts of a plant. You already know, that the Root is what grows in the ground, and supplies the rest with nourishment. The Stem rises from the root, and is generally clothed with green leaves. The Flower is the beautifully coloured part that you so often admire:

* Genera Plantarum, Genera of Plants.
it is subdivided into several different parts, which I
will explain to you, if you will go into the garden
and bring me a branch of any plant you like.

EDWARD.

Here, mamma, is some Wall-flower: it is the
first that I could find in blow.

MOTHER.

It will do very well; but if we had a larger
flower you could see the different parts more dis-
tinctly. [Plate 1.] You may now break off one
of the flowers, and hold it by the little stalk, be-
tween your thumb and finger. The green part,
that you see close under the yellow blossom, and
which is not unlike a cup, is called the Calyx or
flower-cup. The yellow leaves that grow out of
it are called Pet'als or blossom-leaves: the petals
altogether form what is called the Corol'la or blos-
som. Pull off, very gently, from the little stalk, the
calyx and petals, and you will see seven threads;
one in the middle, thicker than the rest, and the
other six with yellow heads; those with heads
are called Stamens, and are each composed of
the heads, called Anthers, and the threads which
support them, Fil'aments; as this pen-knife might
be divided into the handle and the blade, which
are together called a knife. The centre thread is
called the Pistil, and consists of three portions; the
The Flower here shown is that of the COMMON WALL FLOWER.

- P. Petal
- A. Anther
- F. Filament
- N. Nectary
- S. Summit
- St. Style
- G. Gynoecium
- R. Receptacle

The parts of a flower include:

- **Flower**
- **Corolla**, or Blossom
- **Calyx**, or Cup
- **Stamen**
- **Pistil**
- **Seeds**
- **Receptacle**
Germen or seed-bud, which is the thickest green part at the bottom, — the Style which stands upon it, — and the Summit, or top of the style. When the petals fall off, after the plant has been in flower for some time, the germen grows larger, and is then called the Seed-vessel, because it contains the seeds within it. In the Wall-flower, the seed-vessel is a long pod, containing several flat seeds. If you now pull off the stamens and pistil, you may perceive what is called the Receptacle: it is only the top of the stalk, to which all the other parts of the flower is fixed.

EDWARD.

I have done so; — but I do not see any thing remarkable.

MOTHER.

You are right. In many flowers the receptacle is not very conspicuous, and the Wall-flower is one of them; but in others it is very large, particularly in the Artichoke, which you sometimes see at dinner. What we commonly call the bottom, — which remains, after we have taken off the leaves, and the bristly substance, or choke, — is the receptacle.

Another part of a flower, besides the receptacle, is also very often indistinct. It is called the Nectary, and its use is supposed to be to prepare a sweet fluid, like honey or nectar, which it frequently contains. It is from this that bees collect their honey. The form of the nectary
varies in different flowers; in some it is very conspicuous, in others less visible, and in many it appears to be entirely wanting. The nectaries of the Wall-flower are two little greenish bodies surrounding the lower part of the short stamens; but as you cannot easily see them, I shall take an opportunity, when we examine a plant that has larger nectaries, of pointing them out to you. There are many flowers so small, that their separate parts cannot be seen distinctly without the help of a magnifying-glass; here is one that you shall have to assist you: — and you will find a needle and a sharp-pointed pen-knife also very useful: for some flowers are too delicate to be divided by the fingers alone.
CONVERSATION THE SECOND.

LINNÆAN ARRANGEMENT OF PLANTS.—CLASSES.—
ALTERATIONS ADOPTED BY DR. WITHERING.—ORDERS.—GENERA.—SPECIES.

EDWARD.

When I have examined a plant, mamma, how am I to find out its name?

MOTHER.

Before you can do so, you must learn how the vegetables that are known have been arranged; and I will now explain to you, as clearly as I can, the system of Linnaeus, which is the arrangement almost universally used in this country.

Linnaeus distributed all the plants, that were known to him, in twenty-four divisions, each of which is called a Class; and each class he subdivided into Orders. The first eleven classes are distinguished by the number of separate stamens in each flower.—But tell me whether you recollect what the stamens and pistils are?

EDWARD.

I think you said, that the whitish threads called
filaments, and the yellow heads, or anthers, were both together the stamens; and the thicker thread, that stands in the middle of them, the pistil.

MOTHER.

You are quite right. I am very glad to find that you remember so well what I tell you.

In the first class, Monan'dria, each flower contains one stamen.

In the second, Dian'dria, two stamens; and so on, to the tenth class, Decan'dria, which has ten stamens in each flower.

In the eleventh class, Dodecan'dria, each flower contains from eleven to nineteen stamens.

In the twelfth, Icosan'dria, there are twenty stamens or more in each flower, the precise number not being of any consequence;—and they are fixed to the calyx.

The thirteenth class, Polyan'dria, at first sight, is like the twelfth; but the difference, which is very important, is, that the stamens are fastened to the receptacle, instead of growing from the sides of the calyx. If you do not perceive this difference at once, in examining plants of these two classes, the surest way is to pull off the calyx gently, and then, if the stamens remain, you may conclude that they grow upon the receptacle, and that the plant is in the class Polyandria.

The character of the fourteenth class, Didy-
Arrangement.—Classes.

Na'mia, is, that the flowers have each four stamens, two of them long and two short.

In the flowers of the fifteenth class, Tetradynia, there are six stamens, four long and two short.

In the sixteenth, Monadelphia, the filaments are all united together, forming a little tube round the pistil.

In the flowers of the seventeenth class, Diadelphia, the filaments are united at the bottom, generally in two sets.

The eighteenth class, Polyadelphia, contains those plants which have their filaments united at the bottom into three or more little parcels or bundles; as you may see in the large Saint-John's-wort in the garden.

In the nineteenth class, Syngenesia, the anthers are united, and form a little tube; but the filaments are separate.

In the twentieth class, Gynandria, the stamens grow out of the pistil itself.

The twenty-first class, Monecia, contains those plants, in which the stamens and pistils grow in separate flowers, but on the same plant.

The twenty-second, Dioecia, those in which the stamens and pistils grow in separate flowers, and on different plants.

In the twenty-third class, Polygamia, three different sorts of flowers grow on the same plant.
some of them having pistils only, some stamens only, and others both stamens and pistils.

But Dr. Withering, in his "Arrangement of British Plants," which is one of the best books that you can refer to, until you have learned Latin, has distributed the plants of these last four classes among the first nineteen, according to the number of their stamens.

Those that belong to the twenty-fourth class, Cryptogamia, have flowers which are not visible to the naked eye; such as ferns, mosses, sea-weeds, mushrooms, &c.

EDWARD.

I am afraid I shall never remember the distinctions of all these classes.

MOTHER.

Do not be alarmed, my dear; here is a drawing I have made [Plate 2.], to assist your memory, and show you their different characters; and I have written the Latin names over the figures, that you may learn them, as well as the numbers, — because they are used by all botanists in speaking of the classes.

EDWARD.

Then how can I learn botany, without knowing Latin?
TABLE OF PART 1.

C.1. MONANDRIA.
C.2. DIANDRIA.
C.3. TRIANDRIA.

C.4. TETRANTRIA.
C.5. PENTANDRIA.
C.6. HEXANDRIA.

C.7. HEPTANDRIA.
C.8. OCTANDRIA.
C.9. ENNEANDRIA.

C.10. DECANDRIA.
C.11. DODECANDRIA.
C.12. ICOSANDRIA.

One Stamen in each Flower.
Two Stamens.
Three Stamens.

Four Stamens.
Five Stamens.
Six Stamens.

Seven Stamens.
Eight Stamens.
Nine Stamens.

Ten Stamens.
Eleven to Nineteen Stamens.
More than Twelve Stamens fixed to the Gynoecium.

Published July 1823, by Longman & Co.
The Classes

Part 2.

C.13. POLYANDRIA

More than twenty Stamens fused to the Receptacle.

C.16. MONADELPHIA

All the Filaments united.

C.19. SYNGENESIA

Five Stamens - The Anthers united.

C.22. DIOECIA

The Stamens and Pistils in separate Flowers on different Plants.

C.14. DIDYNAMIA

Four Stamens, two long and two short.

C.17. DLADELPHIA

The Filaments united in two sets.

C.20. GYNANDRIA

The Filaments united in more than two sets.

C.21. MONOECLA

The Stamens growing upon the Style.

C.23. POLYGAMIA

Stamens only, Pistils only, or both in each Flower.

C.15. TETRADYNAMIA

Six Stamens, four long and two short.

C.18. POLYADELPHIA

The Stamens and Pistils in separate Flowers on the same Plant.

C.24. CRYPTOGRAMIA

Stamens and Pistils not visible to the naked eye.
MOTHER.

There are several English books in which the Latin words employed in botany are very clearly explained*; and until you are able to make use of them without my assistance, I will explain every thing as we go on.

EDWARD.

Will you now tell me something about the Orders, mamma?

MOTHER.

In the first thirteen classes, from Monandria to Polyandria, the Orders are known by the number of Pistils in each flower.

When there is only one pistil, the plant is said to be in the order Monogyn'ia.

If there are two, Digyn'ia.
If three, Trigyn'ia.
If four, Tetracylin'ia.
If five, Pentacylin'ia.
If six, which is not common, Hexacylin'ia.
If seven, Heptacylin'ia; still less common.
If eight, which scarcely ever occurs, Octacylin'ia.
If nine, of which there is hardly an instance, Enneacylin'ia.
If ten, Decacylin'ia.

* Martyn's Language of Botany, &c.
If about twelve, Dodecagon'ia.
Many pistils,—that is, more than twelve,—Polygyn'ia.

In the fourteenth class, Didynamia, the orders, which are two, depend upon the seeds being contained in seed-vessels or not. They are called,—Gymnosper'mia, when the seeds are naked, or without a covering: and Angiosper'mia, when the seeds are inclosed in a seed-vessel.

The orders of the fifteenth class, Tetradynamia, are also two, and are determined by the shape of the seed-vessels, which are called Pods.

The first has broad short pods, and is called Silicul'o'sa.

The second has long pods, and is named Sili-quo'sa.

In the sixteenth, seventeenth, and eighteenth classes, Monadelphia, Diadelphia, and Polyadelphia, the orders are known by the number of Stamens.

The nineteenth class, Syngenesia, contains five orders: but as they are rather difficult to understand, it will be time enough to learn them when you come to examine plants of that class, which I should not advise you to do for some time. Nor is it necessary for you to learn at present the orders of the five remaining classes, which are also difficult.
EDWARD.

I should like to try to find out, by myself, what class and order some plant belongs to.

MOTHER.

That is the best thing you can do now, and here is a Tulip to begin with. It is always a good way, when you find a plant that is new to you, to examine some of the flowers which are not yet quite opened, as well as those that are; for the anthers are then more distinct, and you may be sure that none of them have been lost.

EDWARD.

I think this Tulip is in the sixth class, Hexandria, and the order Monogynia.

MOTHER.

It is, my dear; but why do you think so?

EDWARD.

Because it has six stamens and one pistil. But the anthers are black, instead of being yellow like those of the Wall-flower that we examined yesterday.—Does that make any difference?

MOTHER.

No. The powder with which the anthers are covered, and which is called Pollen, or Farina, is of different colours in different plants.
EDWARD.

I wish the Tulip had a sweet smell, it looks so beautiful.

MOTHER.

We must not expect to find many perfections united in plants, more than in other things: — Those that look best are seldom the most useful. — Do you remember the lines our friend wrote for you the other day?

EDWARD.

I believe I do; —

For brilliant tints, to strike the eye,
What plant can with the Tulip vie?
Yet no delicious scent it yields,
To cheer the garden or the fields;
In vain in gaudy colours drest,
'Tis rather gazed at than caress'd.

MOTHER.

I must now finish what I was going to say, before we take our walk.

Linnaeus divided the Orders into what are called Genera, and these genera again into Species.

A Genus, which is the singular of the word Genera, is formed of a number of plants, that agree with each other in the structure of their flowers and fruit.

A Species includes such plants as agree in these particulars, but differ in others; as in the leaves, the stem, the root, or other parts besides the flower.
For instance, you often see in green-houses a great many different sorts of Geranium: these Geraniums form a genus of plants, and each different sort is a species of that genus;—so that when you hear a person say, an Ivy-leaved Geranium, a Rose-scented Geranium, or a Butterfly Geranium, you know that they all belong to the genus Geranium, and that the Ivy-leaved, &c. are the different species.

In distinguishing plants, two words are always employed by botanists; the first, which is applied to all the species of the same genus, is called the Generic name; but the second is confined to a single species only, and is called the Specific, or Trivial, name. This mode of naming plants is so much approved of, that it is universally used, even by those botanists who arrange them in a different manner from Linnaeus. The two names thus employed are understood in every part of the world, by those who study botany; but the common names are different in different countries. If you were to talk of Wall-flower, or Stock-Gilliflower, to a French or German botanist, he would not understand you,—nor would you know what he meant by the French or German names of those plants, though very abundant in his own country; but the names Cheiran’thus fruticulo’sus, and Cheiran’thus sinua’tus would immediately signify to him that you were speaking of two different species of the
genus Cheiran'thus; and if he did not know them, he could find their descriptions by referring to botanical books.

EDWARD.

Shall we examine a Geranium first, as we have so many in our green-house?

MOTHER.

No, my dear,—for that genus is in the sixteenth class, Monadelphia; and I think it will be easier for you to begin with a plant in one of the first ten classes, which depend on the number only of the stamens. Besides, the Geraniums in the green-house are not natives of England, that is, they do not grow wild in the hedges and fields: and we had better confine ourselves, for some time, to the examination of native plants only. Although these are generally called weeds, many of them are so beautiful that they are cultivated in flower-gardens. An acquaintance with the plants of our own country is more desirable for you than a knowledge of foreign ones, as they are more within your reach; and it will be impossible to be thoroughly acquainted with both, unless you devote much more time to Botany, than you can give it without neglecting your other employments.
CONVERSATION THE THIRD.

EDWARD.

Mamma, shall we find plants of all of the first ten classes in our walks?

MOTHER.

I do not think we shall, for there are very few native plants in the classes Monandria, Heptandria, and Enneandria, (the first, seventh, and ninth,) and they are not common. But all that I wish you to do at present is, to gain such a knowledge of the different parts of plants, with their classes and orders, as will enable you to understand and make use of the books which are generally employed by persons who study botany. Even if we did find a plant in the class Monandria, I should not advise you to examine it, as the flowers are very small, and not easily distinguished by a young beginner.

The Mare’s-tail, to which Linnæus gave the
generic name of Hippu'ris, and the specific name vulga'ris, is in the first class; it grows in muddy ponds, though not very commonly found. The flowers are very small, and grow close to the stem, at the bottom of the leaf; and their structure is very simple; for they have no blossom, and only one stamen, one pistil, and one seed. [Plate 2. Class 1.]

EDWARD.

But how can it be called a flower without having a blossom?

MOTHER.

All the parts which are necessary to form a perfect flower are the stamens and pistils, for these alone are concerned in the production of the seed. You will find, hereafter, that some flowers have not any calyx, and others no petals, which, you recollect, form the blossom; but you will never find any without stamens or pistils.

If we were near the sea, I could perhaps show you a useful plant, the Jointed Glasswort, Salicor'nia herba'cea, which is also in the class Monandria. It has a saltish taste, and cattle are very fond of it. In some countries this plant, with several others that grow near the coast, is cut down, towards the end of summer, when fully grown; and being dried in the sun, they are burnt for the sake of their ashes, which are used in making glass and soap, and are called Kelp.
Another plant of this class, the Grass-wrack,
Zoste'ra mari'na, grows near the sea, and in salt-
water ditches. In some of the northern parts of
Europe, it is used for bedding, and has lately been
imported in large quantities from the Continent
into this country for stuffing mattrasses, and for
other purposes, to which horse hair is generally
applied. It is also said to be very useful for packing
bottles and other brittle ware.

The Indian Arrow-root, too, that your little bro-
ther has sometimes for breakfast, is obtained from
a plant of this class, Maran'ta arundina'cea; which
is a native of South America, and has its English
name from being supposed to extract the poison
from wounds made by the poisoned arrows of the
Indians. It has a thick fleshy root, which, when
washed, pounded, and bleached, makes the powder
that we use as food.

The Turmeric, so commonly used in dying
yellow, is the root of a plant, also in the first
class, called Cur'cuma lon'ga by Linnæus. It is
very much cultivated in the East Indies and in
China for the sake of its roots, which are sold in
our shops as a dye. Indian Shot, Can'na In'dica,
a native of both the Indies, and Ginger, Zin'giber
officina'le, a native of the East Indies, belong also
to this class. — But I dare say you are now anxious
to examine a plant yourself, so let us go into the
fields and look for one.
EXAMINATION OF A PLANT.

EDWARD.

Oh, here is a nice little blue flower; shall I take it home, it is so pretty?

MOTHER.

Do, my dear; and if you can tell me the class and order it belongs to, I will show you how to find out its name, in Withering's Botany.

EDWARD.

I see only two stamens, and one pistil; so that, I suppose, it is in the second class, and the first order. Am I right?

MOTHER.

Yes, perfectly right; but you must remember, if you can, to call each class and order by the names Linnaeus gave them.

EDWARD.

Then this plant is in the class Diandria, and the order Monogynia. What am I to do next?

MOTHER.

Now hold the flower in your hand, and look at every part, very attentively, while I read to you the descriptions of a few genera in the class Diandria. The first genus described has "a very small cup; of one leaf," — that is, consisting of
one piece; "with four blunt teeth, or divisions, "in its rim." Look at your calyx, and see if it is like this. — [Plate 3.]

Edward.

It is of one piece, but the divisions are sharp.

Mother.

Very well. Now look again at your flower. "The blossom of one petal —"

Edward.

It cannot be that; for mine has four petals.

Mother.

Pull them out, and let me see. I think you will find, that when you attempt to take one, they will all come off together.

Edward.

So they do; — and the stamens with them!

Mother.

Then you see that your blossom has but one petal, with four divisions, though at first you thought it had four petals. Blossoms formed of one piece are called Monopetalous; those of many pieces, Polypetalous. In flowers of one petal, the stamens are generally fastened to the blossom, and in those of more petals, to the receptacle or calyx; so
that in the latter case we may take away the petals without the stamens. This observation affords an easy and pretty certain rule for knowing whether a corolla consists of one petal, or of several; which it is sometimes not very easy to decide. When the calyx is formed of one piece, as is the case in this plant, it is said to be Monophyl- lous; when of more than a single piece,—Diphyl- lous, or two-leaved; Triphylloous, three-leaved, &c.; or Polyphylloous, many-leaved; according to the number of distinct pieces of which it consists. — We must now go on with our description where we left off.

"Blossom of one petal, shaped somewhat like "a funnel; tube of the blossom longer than the "cup;" — the Tube, in a blossom of one petal, is the lower part which stands in the calyx— "Border of the blossom," that is, the upper spreading part, "divided into four egg-shaped "segments or divisions. Filaments opposite to "each other. Anthers nearly as long as the blos- som. The germen, or lowest part of the pistil, "nearly round; style very short; summit, thick, "blunt, cloven," that is, divided, half-way down. —Does this agree with your plant?

EDWARD.

I think it is something like it, except in the pistil. The summit of mine is not divided, and the style is not very short.
Well, we must see if the next genus will answer better. — "Calyx, of one leaf, with two divisions. "Blossom, two petals." — We need not go farther with this genus, for your flower has but one petal; let us try another. — "Calyx, a cup; with "four divisions, each of them sharp. Blossom of "one petal; tube of the blossom, nearly as long as "the cup; border flat, divided into four egg-shaped "parts, the lowest division narrower than any of "the others. Stamens two; filaments thinner at "the bottom than in the other parts; anthers "oblong. Germin compressed or flattened; style "thread-shaped, as long as the stamens; summit "undivided." —

EDWARD.

That is exactly like mine, in every thing.

MOTHER.

It is your plant, my dear; so that we need not read any more at present. The genus is called Veroni'ca, and is distinguished from all other genera of the same class and order, by having the lowest division of the blossom narrower than the rest. We ought now to determine what species of Veroni'ca your plant belongs to, by comparing it with the different descriptions given by Withering; but as there are a great many species, and some of them very like each other, I will tell you
which it is at once, that you may not be too much puzzled. It is Veroni'ca Chamæd'rys, called in English Germander Speedwell [Plate 3.]; and it is known from the other species by the bunches of flowers rising from the sides of the main stem. The leaves are egg-shaped, wrinkled, toothed at the edges, and sitting,—that is, growing close to the stem, without any little stalks of their own; and the stem, through its whole length, has two hairy lines, one on each side, but placed alternately between the joints.

EDWARD.

The young leaves that are not yet opened look as if they were covered with down.

MOTHER.

The leaves of several plants, especially when young, are clothed with very fine hairs; which Grew, an English botanist who lived in the time of Charles the Second, supposed to be intended for their protection; the leaves being exceedingly tender in their infant state:—"So that they seem," he says, "to be vested with a coat of frize, or to "be kept warm, like young and dainty chickens, "in wool."*

EDWARD.

I never thought it could be so easy to find out the name of a plant. How plain the description is!—But what was the first plant that you read about, which had the summit divided?

* Grew's Anatomy of Plants, p. 34.
Veronica Chamaedrys German. Verbena. Speedwell.

Class II. Dianthus Order Monogynia.
MOTHER.

It was common Privet, Ligustrum vulgare, of which hedges are often made, as it grows very fast. The purple colour upon cards is prepared from its berries; which are filled with a spongy violet-coloured pulp, and make also a good green dye, with the addition of alum.

EDWARD.

Are there many useful plants in the class Diandria?

MOTHER.

Not so many as in several of the other classes; but I will mention a few of them.

The black Pepper plant, Piper nigrum, is a native of the East and West Indies, and some of the South Sea Islands. It is cultivated with great success in the Molucca Islands, Java, and Sumatra, and exported from them to every part of the world where regular trade is carried on. White pepper was formerly thought to be a different species from the black; but it is really nothing more than the ripe berries deprived of their skin by steeping them in water, after which they are dried in the sun. It is this berry, ground into powder, that you see used every day at dinner.

The common Ash, Fraxinus excelsior*, is a native of England; and is placed by Withering in

* In the twenty-third class, Polygama, of Linnaeus.
the class Diandria, because the flowers contain two stamens. In the north of Lancashire, when grass is scarce, the tops of the ash trees are cut down to feed the cattle. The wood is hard and tough, and is much used for making tools employed in husbandry. It is one of the latest trees in coming into leaf, and loses its leaves early in autumn.

The Olive tree belongs to the genus O'lea, in this class, of which there are several species. It is supposed to have come originally from Asia, where it gave the name to the Mount of Olives near Jerusalem. The O'lea Europæ'a is a small evergreen tree, universally cultivated in the south of Europe for the sake of its fruit, from which olive-oil is obtained by pressing it in a mill. The unripe olives, when pickled, are sent over in barrels to England, where they are eaten at desserts. Another species, called the sweet-scented Olive, O'lea fra'grans, is kept in greenhouses in this country, and is valuable for the delightful scent of its little white flowers, which resembles that of the highest perfumed green tea.

The common Lilac, Syrin'ga vulga'ris, a native of Persia, white Jessamine, Jasmi'num officina'le, of the south of Europe, Rosemary, Rosmari'num officina'lis, and Sage, Sal'via, are also in the class Diandria; and they all show very distinctly the characters of their class and orders. Rosemary, which you have seen in the garden, is an evergreen
Anthoxanthum odoratum Sweet scented Vernal Grass.

Class II: DLANDRIA, Order DIGYNIA.
shrub, and grows wild on the shores of the Mediterranean sea. It was formerly so abundant in Languedoc, about the sixteenth century, that the inhabitants burnt scarcely any other fuel.

There are more than sixty different species of Sage, many of which are natives of Europe; but two only have been found wild in England,—Meadow-Sage, Salvia praten'sis, and wild English Clary, Salvia verben'ica. An infusion of sage leaves is sometimes used as tea; and the Chinese say they are surprised that Europeans should come to them for tea, when we have sage, which they think far better. The Dutch have long been in the habit of collecting large quantities of sage leaves, not only in Holland, but in the south of France, which they dry like tea, and pack in cases for exportation to China; where they receive, in exchange for every pound of sage, four pounds of tea.

The sweet-scented Vernal-grass, Anthoxan'thum odora'tum, that smells so delightfully in new-made hay, is the only native grass of this class. I will give you this drawing of it now [Plate 4.], to show its general appearance; and you can look at it again when we talk about other grasses.* But I am afraid that if I tell you any more at present you will be tired; so we shall leave the third class, Triandria, until to-morrow.

* See hereafter, pages 41, 42.
CONVERSATION THE FOURTH.

EDWARD.

MAMMA, will you come out with me now to look for a plant in the third class?

MOTHER.

Yes: but we need not go farther than the garden; for you cannot have a better example than the Crocus, which is a native of England, though it does not grow wild in our neighbourhood.

EDWARD.

Here are purple, yellow, and white Crocuses; are they of different species?

MOTHER.

Perhaps not; for the character of the species does not depend upon the colour, size, or smell of
Pl. 5.

Crocus vernus _Spring Crocus._

Class III. _TRIANDRIA_ Order _MONOGYNIA._

Published July 1839 (J. Longman & Co.)
the flower. Plants which differ in these respects only are called Varieties; and if you compare these three different coloured Crocuses, you will probably find that they agree in the leaves and other parts, which, I told you, were to be attended to, in distinguishing species. The different parts of plants have, generally, peculiar shades of colour. The root is commonly black, white, or brown; seldom yellow or red, but never green. The stem and leaves are commonly green; and rarely blue, yellow, or red. The calyx is generally green, but with some exceptions; that of the Daphne Laureola, Spurge Laurel, is yellow, and the blossom green; the calyx of the Fuchsia coccinea, scarlet Fuchsia, is a bright scarlet, and the petals in the centre of the richest purple. Corollas have almost every colour; but rarely green, and scarcely ever black. The black spot in the blossom of the common garden Bean is the darkest colour I have ever seen in any plant.—Now bring in a Crocus, and I will read you a description of it. [Plate 5.] You perceive that it has three stamens, and one pistil: what class and order then does it belong to?

EDWARD.

To the class Triandria, and order Monogynia.

MOTHER.

Very well. Now look at it as you did at the
Veronica: this sort of calyx, which is very different from those I have already described to you, is called a Sheath, and is composed of one leaf rising from the stem: you see it is formed of a thin skinny substance, and not green, like the cups of most other flowers, but whitish tinged with brown. "The blossom is of one petal. Tube of the "blossom very long: border with six divisions, "standing upright;"—not open and spreading, like that of Veronica. "Segments egg-shaped, "pointed, and all of the same size. Stamens "three; filaments the shape of an awl, shorter "than the blossom; anthers shaped like the head "of an arrow. The germen, which is placed below "the blossom and concealed in the sheath, is "roundish; the style thread-shaped; and the "summits, three in number, are notched, like the "teeth of a saw, and a little twisted."

This is the generic character of Crocus; and our species is the vernus, or Spring Crocus, which is distinguished by the summits being of a pale colour, not very long, and standing up straight within the flowers.

There are two other native species, sativus and nudiflorus: but the last is very rare. In the Crocus sativus, or Saffron, the tube of the blossom is very long, and the summit of the pistil is divided into three long strap-shaped segments, which are of a full orange colour, and hang out of the
blossom. The petals are violet-coloured, and the plant has an agreeable smell. The leaves of the Saffron are not so broad as those of the Spring Crocus.

The summits of the pistil of the *Crocus sativus* are, I believe, the only parts of any of the species that are made use of. They are carefully picked, pressed together, and dried in kilns, and are then the Saffron that is sold in the shops, which was formerly very much used in medicine. There is a place in Essex called Saffron-Walden, from the quantity of this plant which was formerly cultivated there, for the purpose of preparing the drug.

EDWARD.

Can we find any other plants of this class in the fields?

MOTHER.

You cannot go into any field without meeting some of them; for the class *Triandria* contains almost all the grasses, which are, you know, so common and so useful; the leaves affording pasture for cattle, the small seeds food for birds, and the larger for men.

Linnaeus remarks, that grasses are the most numerous of plants and the most widely diffused; forming a sixth part of all the vegetables on our globe, especially in open situations. Most of
them are without scent, but a few are fragrant, especially when dry; and none are known to be poisonous, except the Darnel, Lolium temulentum, which has poisonous seeds.

EDWARD.

I have never seen the flowers of grasses. Are they pretty?

MOTHER.

I am not surprised that you have never observed them; for not having petals of brilliant colours like many other flowers, they are generally overlooked; but their construction is not less curious than that of the most beautiful in appearance.

The care taken by nature to ensure the production of grass is truly wonderful. Though the leaves be trodden down or consumed, the roots still increase; and the stalks which support the flowers are seldom eaten by cattle, so that the seeds are always allowed to ripen. Some of the grasses that grow on very high mountains, where the heat is not sufficient to ripen the seed, are propagated by suckers or shoots, which rise from the root, spread along the ground, and then take root themselves. Grasses of this kind are called Stoloniferous. Some others are propagated in a manner not less wonderful; for the seeds begin to grow within the calyx itself, which in grasses is called the Husk, and plants are formed there with little leaves and roots;
these fall to the ground, where they take root, and then continue to grow like the parent plant from which they sprung. In these cases the grass is called Vivip'arous. There is a native species, called Festu'ca vivip'ara, viviparous Fescue-grass, which grows in this way, whether on the tops of mountains or in plains. It is found in perfection in Scotland, on dry walls, and in the moist crevices of rocks.

EDWARD.

But what sorts of grass seeds do men eat?

MOTHER.

Wheat, barley, oats, rye, and corn of all kinds, are the seeds of different grasses. Wheat, Tri'ticum hyber'num, is the grain of which bread is chiefly made; but it must first be ground into flour, or meal. Starch, and hair powder, which is only ground starch, are also prepared from wheaten flour. Barley, Hor'deum vulga're, is with us used principally for making beer; but in Spain, where malt liquor is little known, they feed their horses with it, as we do with oats. The poorer people of England, Scotland, and Ireland make use of Oats, Ave'na sati'va, ground into meal, for porridge; and in Scotland oaten bread is a common article of food. The inhabitants of Norway make bread of barley and oatmeal, which keeps thirty or forty years, and is even considered as the better for being
old. At the christening of a child, bread is sometimes made use of that was baked in the time of its great-grandfather.

EDWARD.

Are all these grasses natives of England?

MOTHER.

The particular species which are most valuable are not native; but we shall find others of the same genera that are.

Couch-grass, the weed that our gardener finds so troublesome, is a species of wheat, Trit'icum repens, the roots of which have a sweet taste like liquorice: at Naples, they are sold in the market as food for horses, and are sometimes ground and made into bread. The seeds of the Festu'ca flu'itans, floating Fescue, are very large and sweetish, and are gathered for the table in Poland, and some other countries, where they are called manna.

Wall-barley or Way Bennet, Hor'deum muri'num, is a weed very common by road-sides, and is eaten by horses and sheep.

The animated Oats, that your aunt sometimes amuses you with, are the seeds of the Ave'na fat'ua, which grows wild in corn-fields.

The Sea-Lyme-grass, El'ymus arena'rius, which is found pretty commonly on some of our own shores, grows abundantly in Iceland and Green-
land, where the climate is too cold to allow the better kinds of corn to ripen; and the seeds are sometimes made into bread by the inhabitants of those miserable countries.

In the island of Rasay, one of the Scottish Western Isles, the fishermen use ropes for their nets made of the mountain Melic-grass, Mel'ica nu'tans, which grows plentifully there, and is remarkably tough.

The Sugar-cane and Reed are also grasses. The former, Sac'charum officina'rum, is supposed to have been originally a native of Spain and Sicily, and to have been carried by the Europeans into America and the West Indies, where it is now very extensively cultivated. It is from the juice of its stem, which sometimes grows to the height of twenty feet, that all our sugar is prepared. The canes or stems of the plant, when ripe, are bruised between the rollers of a mill, to squeeze out the juice, which is collected and put into large boilers, with a small quantity of quicklime, or strong ley of vegetable ashes: when this has been boiled to the consistence of a syrup, and carefully skimmed, it is drawn off and allowed to cool in vessels perforated with small holes, through which the impure liquid part, called molasses or treacle, escapes, and is received in a cistern below;—while the remainder becomes a mass of small and hard grains of a brownish colour, called moist or raw sugar.
When this is imported into Europe, it is farther purified by other processes, and converted into refined or loaf sugar, such as we use at breakfast and tea.

The tops of the sugar-canes, and the leaves that grow upon the joints, make very good provender for cattle; and the refuse of the cane itself is used for fuel, so that no part of this plant is without its use.

But the sugar-cane is by no means the only plant from which sugar can be obtained. The juice of the A'cer sacchari'num, American Maple, yields it in such abundance, that American farmers manufacture it for their own use. The juice of the grape, also, when ripe, yields a sort of sugar, which is called Sugar of grapes, and has lately been employed in France as a substitute for what is brought from the West Indies, though not so sweet or agreeable to the taste. In Mexico, sugar is obtained from the Aga've America'na, American Agave; and at Kamschatka, it is produced from the Herac'leum Sphondyl'i'um, Cow-parsnip, and Fu'cus saccha-ri'nus, a species of sea-weed called Dulse. Several roots also yield sugar; as the common beet, turnip, carrot, and parsnip.

The Sea-reed, Arun'do arena'ria, grows on the driest sandy parts of our sea-shores, where it is so useful in binding the sand, and preventing it from being blown into the neighbouring fields, that
Queen Elizabeth forbade its extirpation. In the north of Scotland, mats, floor-brushes, ropes, and hats are manufactured of it; and in China, the sailors, in rainy weather, use large hats, jackets, and trowsers, made of reeds laid close together, from which the rain runs off, as from the feathers of water-birds.

The Bamboo, a native of the East Indies, is another species of reed, Arun’do bam’bos of Lin- næus, the stalks of which are almost solid when young, but become hollow as they grow older, except at the joints; they sometimes measure fifteen inches round, and sixty feet in height; and being strong, durable, and very light, are much used in the construction of buildings, and for making furniture. In the East they serve also for the poles that support a sort of litter or bed, called Palanquin, which is carried about by men, and used like a sedan chair in this country; only that the palanquin bearers put the poles upon their shoulders, instead of holding them in their hands, like our chairmen.

In Malabar, Bamboos are trained over iron arches, and when they have acquired a curved form, they are used to support the canopies of the palanquins: a lofty bamboo arch of this description is of great value.

EDWARD.

But if the stems are hollow, how can they be so strong?
I am not surprised at your question: — The reason is, that the same quantity of matter acquires much greater strength, by being disposed in the form of a hollow cylinder, than if it were compressed into a solid one, which would be much thinner. The woody part of the smaller roots of trees is generally in the centre, which makes them pliable; while in the trunk the wood is at some distance from the centre, and thus gives great strength to the stem, and is favourable to its upright growth. We see other instances of the same structure in bones, and in the feathers of birds; the strongest bones, as those of the legs of most animals, being hollow: and the hollow quills,—which are exceedingly light, that the bird may be enabled to fly the better,—are wonderfully strong, and much less apt to bend, than if their substance were contracted into a solid cylinder.

When the joints of the bamboo are bored through, they serve for water-pipes; and walking-sticks and fishing-rods are made of the smaller stalks.

EDWARD.

Are not the chairs in your room made in imitation of bamboo?

MOTHER.

They are,—except the seats, which are made of Bull-rushes, Scir'pus lacus'tris, a plant also of the third class, that grows very commonly in clear
Dactylis glomerata. Rough locks'-root.

Class III TRIANDRIA. Order DIGYNIA.
ditches and streams in England. Cottages are sometimes thatched with these rushes, and cattle eat them when other food is scarce.

EDWARD.

I should like to examine some of the grasses, they seem to be so useful.

MOTHER.

They are so very numerous, and their flowers so minute, that many persons neglect them altogether, and attend only to more striking plants. Most of the species seem, at first sight, to be very much alike; but this apparent resemblance will vanish when you make yourself acquainted with their flowers, which you can very easily do with the assistance of a microscope. I should advise you, however, not to examine many grasses, till you are better acquainted with botany in general. But to give you some idea of their structure, we will now look at one that is very common, the Dac'tylis glomera'ta, rough Cocksfoot. [Plate 6.] I have already told you that the calyx of most of the grasses is called the husk; in this instance it is composed of two leaflets, which are called valves: they are both keeled, or shaped like a little boat, and the inner one is larger than the other. The calyx contains several florets collected into an oblong spike, called a spiket. The blossom is composed of two petals, which are also called
valves; they are concave and sharp-pointed, the lower one a little longer than the upper: there are two nectaries, spear-shaped, and tapering to a point; three stamens, the filaments like hair, supporting oblong anthers forked at each end: the germen is egg-shaped, with two styles spreading out, and feathered summits. There is no seed-vessel, but the blossom closes over the seed until it is ripe. In some species there is one floret in each calyx: in others four or five, sometimes more. There are but two native species of Dactylis; stric’ta, and glomera’ta. In our plant, which is of the latter species, the flowers are crowded together in groups, without any regular order, called Panicles; and they all point one way. In rainy seasons the florets sometimes become viviparous. This grass has been much cultivated by farmers; if suffered to grow tall, it is very coarse; but when kept short, it makes a valuable pasture for sheep, and grows very fast. It was found by experiment in Norfolk, that this plant shot up four inches in less than three days. It grows at midsummer during droughts, when almost every thing else is burnt up.

The ancient Romans used, on some occasions, to bestow a crown of grass upon their generals; and this reward for their services, though of so little value in itself, was one of the most honourable; for it was never given but for some great exploit; as when an army reduced to the last ex-
tremities had been saved from destruction by the skill and courage of the general.

Besides the crocus and the grasses, there are several other plants of this class, which you will find growing wild. Do you remember how much pleased you were last winter, in Devonshire, with the plant in the woods that had the pretty little flowers growing on the middle of the leaves?

Edward.

O yes! and it had beautiful red fruit, that looked like cherries. What was the name of it?

Mother.

Butchers'-broom, Rus'cus aculea'tus. It is in the class Triandria of Withering's arrangement; but as the stamens and pistils are not in the same flowers, nor even upon the same plants, Linnæus has placed this genus in the twenty-second class, Dioecia. In general, the berries are not larger than black currants, but the warmth of the climate in Devonshire increases their size. In Italy, the plant is made into brooms, which the butchers use for sweeping their blocks; and from this circumstance it has obtained its English name.

Withering places the genus Ca'rex, or Sedge, in the third class, though it properly belongs to the twenty-first, Monoecia, of Linnaeus. Most of the Sedges grow on the banks of rivers, ditches, and
ponds; and if suffered to increase, will quickly fill up any piece of water. They have creeping roots, which easily make their way through swampy ground; and hence these plants are often found in meadows. In Italy, the leaves of the sharp Vernal Carex, Ca‘rex acu‘ta, are used by glass-makers, to bind round flasks for wine and oil.
CONVERSATION THE FIFTH.

CLASS 4. TETRAN'DRIA.—I'LEX AQUIF'O'Lium, COM-
MON HOLLY, EXAMINED.—CLOTHIERS' TEASEL.—
MADDER.—BIRCH-TREE.—ALDER.—DUTCH MYR-
TLE.—BOX.—CENTUN'CULUS MIN'IMUS.—MISELTOE.
—PARASITICAL PLANTS.—ROSE-COLOURED BAL-
SAM-TREE.—FLOWER-OF-THE-AIR.—THE GREAT
FLOWER, RAFFLE'SIA.

MOTHER.

Well, Edward, if you are inclined to begin the
fourth class, Tetrandria, to-day, bring me a piece
of Holly from the garden, and we will compare it
with the description.

EDWARD.

Is Holly a native plant, mamma?

MOTHER.

Yes, one of the species grows wild in England.
The botanical name is I'lex Aquif'o'lium: and it is
in the order Tetracygnia of this class.

EDWARD.

I thought that all the leaves of holly were prickly,
but here are some quite smooth.
HOLLY. — LEAVES AND WOOD.

MOTHER.

It has been observed, I think by Linnaeus, that the lower branches, within the reach of cattle, bear thorny leaves; while the upper ones, which do not want a defence, are without thorns.—

"Below, a circling fence, its leaves are seen
 "Wrinkled and keen,
 "No grazing cattle through their prickly round
 "Can reach to wound;
 "But as they grow where nothing is to fear,
 "Smooth and unarm'd the pointless leaves appear."*

EDWARD.

But would cattle eat the leaves if they had no thorns?

MOTHER.

They would; and in winter, when other food is scarce, the upper boughs, that have smooth leaves, are sometimes cut down, and strewed upon the ground to feed deer and sheep. They peel off the bark also very nicely, and eat it with the smooth leaves.

The wood of the holly is remarkably white and hard, and takes a fine polish; it is much used by inlayers and engravers on wood, and some of the pretty Tunbridge ware is made of it. Holly planted in hedges makes a very durable as well as ornamental fence.

* Southey.
Ilex Aquifolium - Common Holly.

Class IV. Tetrandra. Order Tetracygnia.

Published Jan. 1828 by Lewman & Co.
EDWARD.

Will you now read the description of the holly, while I look at the flower?

MOTHER.

In the genus *Ilex* [Plate 7.], "The calyx is a "very small cup, which has four or five teeth at the "edge. The blossom is of one petal, generally "with four divisions, but there is some variety in "this respect: the segments roundish and spread-"ing out. The stamens are four, shorter than "the blossom. The germin roundish; with four "summits, but no styles. The seed-vessel is a "roundish berry, containing four very hard seeds." The leaves, in our species, *Aquifolium*, "are "egg-shaped, thorny, and evergreen, surrounded "by a thickened border;" and in the tree from which this specimen was taken, they are what is called variegated, the leaves in the wild state not being stained with white, but of an uniform dark green colour. The berries are of a bright scarlet.

EDWARD.

I do not understand what is meant by evergreen.

MOTHER.

Plants which retain green leaves all the year, in winter as well as in summer, are called so.
EDWARD.

Then do evergreens never change their leaves?

MOTHER.

They change them once in the course of a year, but the plant is always green, because the young leaves come out before the old ones decay. Leaves are usually Deciduous, that is to say, they last only one season; but there are a few plants whose leaves last two or three, and sometimes as long as four years.

In the East and West Indies almost all the trees are evergreen, and have broad leaves; but most of the trees in our cold regions cast their foliage every year, and such as do not have narrow and sharp leaves. It is supposed that if the leaves were broader, the snow which falls during the winter would collect among them, and often break the branches by its weight; but their slenderness prevents this, by allowing the snow to pass between them. This precaution in their structure would be unnecessary in India and other countries where snow is not known.

I will now tell you of a few other plants in the class Tetrandria. The Clothiers' Teasel, Dip'sac-cus fullo'num, is very much cultivated in the west of England, for the use of cloth manufactories. The heads are fixed to the edge of a large broad
wheel, which is kept turning, while the cloth is held against them, and the crooked awns, with which they are furnished, raise the knap of the cloth.

EDWARD.

What are the awns?

MOTHER.

They are slender, sharp bristles, such as grow from the husks of barley and oats, and which you call the beard.—It is supposed that one use of the awn is, to attach the ripe seeds to the coats of animals, that they may be more widely dispersed. In this species of teasel, it is the stiff, strong awns, hooked backwards at the ends, which make the plant so useful to clothiers.

There is a plant of this class, common in the west of England, called Dyer’s Madder, Ru’bia tincto’rum, the root of which affords a very beautiful scarlet dye; but what is cultivated in Holland is considered by dyers as better than that of other countries. Madder has the property of tinging with its red colour the milk, and even the bones, of the animals that feed upon it.

The white Birch, Bet’ula al’ba, in this class, according to Withering*, is very useful to the inhabitants of the north of Europe: it endures the severity of cold climates better than any other tree;

* In class twenty-one, Monoecia, of Linnaeus.
and the seeds, which are furnished with little wings, are often carried by the wind to the tops of buildings, and of high rocks, where they take root and grow. The sap or juice obtained from the trunk in spring is said to make a pleasant wine, with the addition of sugar; and in the northern parts of Lancashire, the young twigs are made into brooms, which are exported to different countries. The bark has the singular property of being more firm and durable than the wood itself. A French traveller*, in passing through Lapland, where there are vast forests of birch, observed, upon examining the trees which had been blown down by the storms, that in several instances the wood was entirely gone; the trunks, though to all appearance solid, consisting only of an empty shell of bark. In Norway, Sweden, and Russia, this bark is cut into square pieces like tiles, to cover the roofs of the houses; the Swedish fishermen make shoes of it; the inhabitants of Kamschatka, hats and drinking cups; and the people of Canada, canoes. An essential oil is extracted from the bark of the birch in Russia, which is used in preparing Russia leather, and gives the peculiar scent to it. The inner silky bark of this tree was used for writing on, before the invention of paper.

The catkins and seeds of the dwarf Birch, Bet'ula

* M. Maupertuis.
na'na, are the principal food of grouse and ptarmigans in northern countries.

The Alder-tree, which you may see on the banks of rivers, is another species of Bet'ula, the Al'nus, the wood of which is soft and brittle, but lasts a long time under water, and is therefore used for pumps and water-pipes, and for beams to lay under the foundations of buildings in marshy places. For this reason the Alder-tree is very much cultivated in Flanders and Holland. It makes, too, the best charcoal for gunpowder; and the bark and leaves are employed in tanning leather and staining fishermen's nets.

The Dutch Myrtle, Myri'ca Ga'le, which is found in our bogs, is in the class Tetrandria, according to Withering.* The flowers grow in little clusters, which are called Catkins; and when these are boiled in water they throw up a scum like bees' wax, that would make candles if collected in sufficient quantity. In America, candles, soap, and sealing-wax, are actually made from another species, called Candle-berry Myrtle, Myri'ca cerif'era.

The common Box, Bux'us sempervi'rens, with which part of our garden is bordered, is also placed by Withering in the fourth class.† It is an ever-

* In the twenty-second class, Dioecia, and order Tetrandria, of Linnæus.
† In the class Monoecia, and order Tetrandria, of Linnæus.
green, and grows more slowly than almost any of our trees, which renders its wood particularly hard, and of a fine close texture, and therefore very valuable for musical and mathematical instruments, and for the finer kinds of turner's ware, which require wood of a smooth grain. The beautiful figures of animals and birds, by Bewick, are cut upon boxwood. The hardest wood is always of slowest growth, as in the oak and holly; and the softest grows the most rapidly, as the horse-chesnut and ash.

You have seen only small trees of Box,—but it grows to the height of ten or twelve feet, at Boxhill, in Surrey; and at Bodenham, in Herefordshire, there is one tree more than twenty feet high.

EDWARD.

Will our borders ever be so tall?

MOTHER.

No: what is used for garden-borders is a dwarf,—or a very small variety, but not a different species, of Box. It never grows to a great height.

EDWARD.

How many curious things you know about plants, mamma!—How did you find them out?

MOTHER.

By reading different botanical works, and books
of travels, which I will lend you when you are old enough to understand them; but you will find that I know very little of the subject, indeed almost nothing, in comparison with many other persons, and less than you yourself can easily learn hereafter. I hope that if ever you become a good botanist, you will still recollect the lines that you heard sung last night:—

What though I trace each herb and flower
That drinks the morning dew;
Did I not own Jehovah's power,
How vain were all I knew!

But there are some other plants of the fourth class, that I must not forget:—the Pimpernel Chaff-weed, Centun'culus min'imus, the smallest of all the British plants that have distinct flowers, the stem being hardly an inch high; and several parasitical plants.

EDWARD.

What does that mean?

MOTHER.

Parasitical plants are those which are produced upon the trunks, branches, or any parts of other vegetables; and which, in many instances, will not grow in the ground; as is the case with Miseltoe, and some kinds of funguses. The Miseltoe, Vis'cum al'bum*, is an evergreen shrub, that grows in great

* In the twenty-second class, Dioecia, of Linnaeus.
perfection on apple-trees. Nobody has ever yet succeeded in making it take root in the earth, but if the berries, when fully ripe, are rubbed on the smooth bark of almost any tree, they adhere closely, and will produce plants the following winter.

Parasitical plants have been lately discovered, that grow upon others which are themselves parasites; but they are very rare.

There are parasites of another kind, less properly called so, which at first take root in the ground, and afterwards fasten themselves to trees, or other substances within their reach, where they strike out roots from their own stems.

EDWARD.

Then Ivy, I suppose, is a parasitical plant?

MOTHER.

Yes, it is one of those I have just mentioned; and you shall hear more about it, when we come to the fifth class, to which it belongs. But some of the most remarkable native parasites belong to the genus Cuscu'ta, or Dodder, in the second order of the fourth class: they have no leaves, but only a slender stalk, with which they lay hold very closely of some other plant stronger than themselves, from whence they draw all their nourishment. There are five native species, which grow upon beans,
hops, flax, heath, and the nettle; and often in such profusion as to destroy the plant that supports them.

There is a parasitical genus peculiar to hot climates, the Epiden'drum of Linnaeus*, one species of which, called Flos-a'ëris, or Flower-of-the-Air, is particularly curious. It is found in abundance in the East Indies, beyond the river Ganges. The smell of the flowers is so delightful, that the inhabitants suspend it from the ceilings of their houses, where it will vegetate for years†; for it grows and even blossoms in the air, when hung up, without attaching itself to any solid body.

Mirbel, a French botanist, says, that in North America there are even parasitic trees, growing upon other trees. The long roots of the Clu'sia ro'sea, rose-coloured Balsam-tree, a parasite of this kind, descend from the top of the trees on which they grow, to the ground; and sometimes several of these roots become engrafted into each other, and are covered with the same bark, so as to form a great case, in which the trunk of the tree that supports the Clu'sia in the air is enclosed.

There are parasites also, which grow upon the roots of other plants; and one of these produces the most extraordinary flower that has ever yet been discovered. It was found in the island of

* In the twentieth class, Gynandria, of Linnaeus.
† Wildenow's "Principles of Botany," p. 263.
GREAT FLOWER, RAFFLE'SIA.

Sumatra, in the year 1818, by Dr. Joseph Arnold, who gives this account of his discovery, in a letter to one of his friends:

"Here, at Pulo Lebbar, on the Manna river, I rejoice to tell you, I happened to meet with what I consider as the greatest prodigy of the vegetable world. I had ventured some way from the party, when one of the Malay servants came running to me with wonder in his eyes, and said, 'Come with me, sir, come! a flower, very large, beautiful, wonderful!' I immediately went with the man about a hundred yards in the jungle" (this name is given in India to wild bushy underwood), "and he pointed to a flower growing close to the ground, under the bushes, which was truly astonishing. My first impulse was to cut it up, and carry it to the hut. I therefore seized the Malay's parang, a sort of instrument like a woodman's chopping-hook, and finding that it sprang from a small root which ran horizontally, about as large as two fingers, or a little more, I soon detached it, and removed it to our hut. To tell you the truth, had I been alone, and had there been no witnesses, I should, I think, have been fearful of mentioning the size of this flower, so much does it exceed every no one have ever seen or heard of; but I had Sir Stamford and Lady Raffles with me.

"The whole flower was of a very thick sub-
"stance, the petals and nectary being in but few " places less than a quarter of an inch thick, and " in some places three-quarters of an inch; the " substance of it was very succulent.—

"Now for the dimensions, which are the most " astonishing part:—it measured a full yard across; " the petals, which were roundish, and five in " number, being twelve inches in length, and it " being about a foot from the insertion of the one " petal to the opposite one; Sir Stamford, Lady " Raffles, and myself, taking immediate measures " to be accurate in this respect, by pinning four " large sheets of paper together, and cutting them " to the precise size of the flower. The nectary, " in the opinion of all of us, would hold twelve " pints, and the weight of this prodigy we cal- " culated to be fifteen pounds.—

"A guide from the interior of the country said " that such flowers were rare, but that he had seen " several, and that the natives called them Krūbut, " or the Great Flower.—You may judge how well " they deserve this name, from the dimensions of " the buds, which are about the size, and have very " much the appearance, of moderate cabbages."

Mr. Brown, who described the specimens of this gigantic Flower that were first sent to England *, was of opinion that the root on which it grew be-

longed to a species of Vī'tis or Vine; and this has since been ascertained to be correct. He named the genus Raffe'sia, in honour of Sir Stamford Raffles, then governor of the East India Company's establishment at Sumatra; and called the species, Arnol'di, in memory of Dr. Arnold, who unfortunately died almost immediately after its discovery.
CONVERSATION THE SIXTH.

CLASS 5. PENTAN’DRIA.—GENUS SOLA’NUM, POTATOE.

MOTHER.
The fifth class, Pentandria, comprehends more than a tenth part of all the plants that are known at present; and some of our most useful vegetables belong to it. I shall begin with the Potatoe, Sol’a’num tubero’sum, which is in the order Mono-gynia.

EDWARD.
Do Potatoes grow wild in England?

MOTHER.
No; they were brought from America, by Sir Walter Raleigh, who, on his return from that part of the world, about the year 1597, distributed a number of potatoes in Ireland, where they were
planted, and multiplied very fast. It is said that they were afterwards brought from Ireland into England; and that, a ship laden with potatoes, having been wrecked on the coast of Lancashire, the cultivation of them soon became general. But the native place of the potatoe is still doubtful; and all that can be said with certainty is, that it came from South America.

It is remarkable that Virginia, the country from which, it was at one time supposed, potatoes were first brought to Europe, was afterwards saved from famine by a supply of them from Ireland. Linnaeus took great pains to introduce the culture of the potatoe into Sweden, but it was not until near the end of the last century that it became general in that country.

Go and ask the gardener for some of the blossoms, and you will see that they are in the first order of the fifth class: you already know that what we eat is a part of the root.

EDWARD.

Here is one bunch with white, and another with purple flowers. Are they only varieties?

MOTHER.

That is all; the plants with white flowers are said to have white roots, and those with purple flowers, red ones. I have been told that in many
parts of Germany, the purple-flowered potatoes are preferred to the white; and in Saxony, where they are cried about, the colour of the blossom is always mentioned.

Edward.

And these little green balls; are they the seeds?

Mother.

They are the seed-vessels, and contain the seeds within them. When the seeds of any one plant are sown, they produce a great many different varieties: and on this account the Potatoe is propagated by the Roots: which ensures the production of plants of the same quality.

Look at the anthers, and you will perceive that they are nearly united at top, in a point, and that there are two little holes in each of them: this is the principal distinguishing character of the genus Solanum, of which there are more than three hundred species; but only two of these are natives of England, the Dulcama'ra and Nî'grum. You will, perhaps, be surprised to hear that the woody Nightshade, which grows wild in our hedges, and bears the pretty scarlet berries that I have so often told you were poisonous, belongs to the same genus as the potatoe: it is the Solanum Dulcama'ra.

The garden Nightshade, Solanum nî'grum, is also poisonous; and even the smell of it is said to
occasion sleep: the flowers are white, and the ripe berries black. The Deadly Nightshade is another plant of the same class and order; and from its English name you might suppose it to be of the same genus also; but the flower is very different: and this may serve to show you how necessary it is to use the botanical names, in speaking of plants, when we wish to distinguish them with accuracy.

EDWARD.

Then what is the botanical name of Deadly Nightshade?

MOTHER.

At’ropa Belladon’na. It grows wild in Europe, particularly in England and Austria; and every part of it is poisonous.

The Tomato, or Love-Apple, that you often see in fruit shops, is the Sola’num Lycoper’sicum; the berry is about the size of a plum, and is used in soups. Another species, the Sola’num Melonge’na, is very much cultivated in Jamaica, and is called the Egg-plant, or vegetable-egg, from the fruit, which in shape and size is very like the egg of a hen.

Our common Ivy, Hed’era Hel’ix, is also in the same class and order, Pentandria Monogynia. It is the only native species of Hed’era, and is the latest flowering of all our plants, for it blossoms in October and November; but the berries are not ripe until the following spring.
IVY. — BUCKTHORN.

EDWARD.
But are not there two kinds of ivy growing on the old church?

MOTHER.
Although the leaves are different, they belong in reality to the same plant. When the ivy trails on the ground, the branches are small and weak, and the leaves have three divisions; but when it climbs up walls or trees, the plant grows much stronger, and the figure of the leaf is changed to egg-shaped. The roots of the common ivy make beautiful cups and boxes, and I have seen even tables that were made of them.

The Buckthorn, *Rhamnus catharticus*, which belongs to the same class and order, grows wild in woods and hedges in various parts of Europe. The unripe fruit is sold under the name of French berries, and affords a juice that is used for staining maps and paper yellow. The juice of the ripe berries, mixed with alum, forms the sap-green employed by painters; and if the berries are gathered late in autumn, their juice is purple. The bark of the stem dyes a beautiful yellow colour. The unripe fruit of another species, the yellow-berried Buckthorn, *Rhamnus infectorius*, a native of the south of Europe, is said to give the yellow colour to Turkey or Morocco leather.

In Africa, the negroes make bread of a sweet yellow berry, the fruit of the *Rhamnus Lotus*,
which they call Tomberongs. When the berries are dried, they pound them into meal, and make cakes of it, which, when dried in the sun, have the colour and taste of gingerbread.

EDWARD.

Shall we not examine a plant to-day?

MOTHER.

Yes, certainly! — and I am glad you have reminded me of it. The best way to learn botany is to examine plants themselves. Here is a piece of water Mouse-ear, Myosotis palustris [Plate 8.] — tell me its class and order.

EDWARD.

I do not see any stamens; where are they?

MOTHER.

Pull off one of the blossoms, and cut it open with your penknife.

EDWARD.

Now I do see five stamens; but the anthers are almost covered by the little yellow parts that met in the middle before I opened the flower.

MOTHER.

These form one of the characters of the genus Myosotis; — but you have not told me the order?
Myosotis palustris _Water Mouse Ear._

Class _DIOECYANDRIA_ - Order _MONOGYNY._
WATER MOUSE-EAR EXAMINED.

EDWARD.

It is the first, Monogynia, for I see only one pistil which has remained in the calyx.

MOTHER.

Very well. "The calyx is a cup, with five oblong sharp divisions. The blossom is of one petal; the border has five blunt divisions, very slightly notched at the ends; the mouth, or upper part, of the tube is closed with five small projecting parts, called Valves: the stamens are placed in the neck of the tube, and the filaments are very short; the anthers small, and covered by the valves. The style is as long as the tube of the blossom. There is no seed-vessel, but the cup enlarges as the seeds ripen, and contains them within it.—In this species, Myosotis palustris, the leaves are spear-shaped, the seeds smooth, and the calyx funnel-shaped, with straight and close-pressed hairs."

EDWARD.

I think I shall always know Mouse-ear, when I see it, by the little valves in the middle of the blossom.

MOTHER.

These do form one of the principal characters of the genus: but you must attend besides to the other circumstances that I have mentioned; for there are other genera of the same class and order, which
are also furnished with valves. The Mouse-ear is also called Forget-me-not.

The Vine, *Vitis*, is a genus of this class. The common species, *vinifera*, which produces grapes, is a native of the south of Europe, where a great many varieties are cultivated, from which different kinds of wine are obtained. The fruit, you know, is generally produced in hot-houses in this part of England; but it grows and ripens very well in the open air in some of the southern counties. And formerly the vine flourished so well in the neighbourhood of London, that wine was made there in considerable quantities.—Lee and Kennedy's nursery-garden, at Hammersmith, is still called the Vineyard, from the goodness of the grapes which were at one time produced there.

The Currant and Gooseberry are also in the class Pentandria, and order Monogynia. Their generic name is *Ribes*.

EDWARD.

Then are currants and gooseberries of the same genus?—They look very different from each other.

MOTHER.

When you examine the plants, you will find that their botanical characters agree. Each of the little yellowish flowers of a currant or gooseberry-bush has five petals, which, as well as the sta-
mens, are fixed to the calyx: the style is cloven; and the blossom is Superior, that is, it grows above the germen; and this germen afterwards becomes the fruit, and contains within it little hard seeds, dispersed through a pulpy substance;—as you will find if you open a currant or gooseberry.

There are several species of Ribes, some producing different sorts of currants, and others gooseberries. All the currant kind are without thorns, and bear clusters of flowers and fruit; but the branches of the gooseberry are thorny; and the flowers are, in general, what is called Solitary,—only one growing from the same part of the plant, instead of a bunch.

EDWARD.

Are they all natives of England?

MOTHER.

No; there are not more than six or seven native species; two of gooseberries, and four or five of currants. Both fruits succeed very well in our gardens.

No thin-skinned fruits, such as grapes, cherries, currants, strawberries, plums, apricots, and peaches, nor even common apples and pears, ever come to perfection in very hot climates; and this is remarkable, because a much greater number of vegetables seem to be calculated to bear a high degree of warmth, than to endure cold.
The Coffee-tree is of the genus Coffea, in the fifth class, and first order; the oriental kind, Coffea arabica, is a native of Arabia; and a second species, occidentalis, grows in the West Indies. The trees are evergreen, but seldom grow higher than seventeen or eighteen feet. The fruit, which is the only useful part, is like a small cherry, and when fit to be gathered is of a deep red colour; it contains two seeds, and these, when roasted and ground, are what we make use of. They are collected in large quantities, and sent to all parts of Europe. It is said that coffee was first sold in England about the year 1680, by the servant Turkish merchant.

Tobacco, Nicotiana Tabacum, is also in the same class and order; and the custom of smoking it is said to have been introduced in England by Sir Walter Raleigh, after his discovery of Virginia, about the year 1536. King James the First had such a dislike to the fumes of this plant, that he wrote a pamphlet against it, which he called a "Counterblast to Tobacco."—It is sold everywhere in China, where, next to Tea, it is considered as the best preservative of health, and is used by all ranks of people. In Italy it is cultivated for use: but we see the plant in England only in greenhouses. It flowers in July and August, and bears a great number of long, tubular, rose-coloured blossoms.
There are some other genera in the first order of the fifth class, that you will be glad to hear of; the Primrose, Prim'ula; Honeysuckle or Woodbine, Lonice'ra; Bindweed, Convol'vulus; Periwinkle, Vin'ca; Bell-flower, Campan'ula; and the Violet, Vi'ola. You will perhaps be surprised to hear that the Auricula, Prim'ula Auric'ula, so often cultivated in gardens, and a native of Switzerland, belongs to the same genus as the Cowslip, Prim'ula ve'ris, and the Primrose, Prim'ula vulga'ris, which both grow wild in England, and appear in the spring when violets are in blow.

EDWARD.

Don't you love violets? they smell so sweet, and grow in such pleasant shady places.

MOTHER.

There are five or six other native species, besides your favourite, the sweet Violet, which is called Vi'ola odora'ta: the Heart's-ease or Pansy, Vi'ola tric'olor, is one of these, though its flower is so different in appearance from that of the sweet-scented species.
CONVERSATION THE SEVENTH.

CLASS 5. CONCLUDED.—DESCRIPTION OF AN UMBEL.—UMBELLIF'EROUS PLANTS.—ELDER.—TEAK-WOOD.—TAMARISK-TREE.—SU'MACH.—FLAX: ITS USES.—PAPER.

MOTHER

By far the greater portion of the order Digynia, in the fifth class, is composed of what are called Umbelliferous or Umbel'late plants, from the Umbels in which their flowers are disposed,—in a very curious arrangement. From the top of a straight stalk there grow several smaller ones, called spokes, which spread out, like the wires in the inside of an umbrella when it is open (the word umbrella, indeed, is the Latin for an umbrella). Each set of spokes forms what is called an Umbel; and every spoke is terminated by another little umbrella, or Umbellule, which consists of a number of smaller stalks, with a single flower at the end of each. You cannot have better examples of this tribe than the common Hemlock, and garden Parsley.
Several of the umbelliferous plants are remarkable for their uses as food or medicine, or else for their poisonous qualities. The roots of most of those which grow in dry soils have a spicy smell and taste; but in moist situations, or in water, they are nearly all poisonous.

The water Cow-bane, Cicuta virosa, grows in pools and rivers, and is one of the most violent of vegetable poisons. Early in the spring cows are often killed by eating it; but as the summer advances, the smell of the plant becomes stronger, and they carefully avoid it. Linnaeus mentions, in his Lapland Tour, that he was told of a disease amongst the cattle at Torneo, which killed a great many of them in the winter, but was still more prevalent in the spring, when they were first turned out to grass; and which the inhabitants could not account for. On examining the place where the cattle had fed, he found it to be a marsh, in which the Cicuta virosa grew in abundance; and by pointing out the plant, he enabled the people to guard against the danger ever after.

The water Parsnep, Si‘um latifolium, and water Hemlock, Phellandrium aquatimum, both natives of England, are also very poisonous. The carrot, Daucus Carota; Parsnep, Pastinaca sativa; Angelica, Angelica Archangelica; Carraway, Carum Carui; Coriander, Coriandrum sativum; Earthnut, Bunium flexuosum; Fennel, Meum Foenic-
ulum; Parsley, Apium Petroseli'num; and Celery, Apium grave'olens; most of which you are ac-
quainted with, are all umbelliferous plants, and
grow wild in England. The Angelica grows very
abundantly in Greenland, where the inhabitants
consider the inner part of its root and stalk as a
great delicacy. It has a much better flavour in cold
climates than when it grows in warmer countries,
like many other eatable plants. Some of the gar-
deners near London propagate great quantities of
this plant, which they sell to the confectioners, who
make a sweetmeat of the tender stalks.

In Poland, the poor people make a fermented
drink, which they use instead of ale, from the
leaves and seeds of the cow-parsnep, Herac'leum
Sphondyl'iun, another umbellate plant, which is
a troublesome weed in our meadows; and the
Kamschatkans and Russians peel its stalks and
eat them.

EDWARD.

Do Carrots grow wild in the fields?

MOTHER.

The garden carrot is nothing more than the wild
carrot, or Bird's-nest, but so much improved by
cultivation that you would hardly suppose them to
be the same; and a comparison of this plant in the
wild and cultivated state affords a good illustration
of the effect of culture in rendering useless weeds
some of our most serviceable vegetables. The roots of the garden carrot are very nourishing; and at the Cape of Good Hope the Dutch planters cultivate large fields of it, as food for their cattle.

But do you think you can distinguish an umbelliferous plant from any other, by the description that I have given you?—Go out, and try if you can find one.

EDWARD.

Here, mamma, are two, from the side of the field, next the road.

MOTHER.

You have made a very good attempt, my dear; and are right in one of them, the Shepherd’s needle, Scan’dex Pec’ten.—And I am not surprised at your taking the other for an umbelliferous plant, as it certainly has the general appearance of one. It is the common Elder, Sambu’cus Eb’ulus. But if you look again, you will find that it has not exactly the structure which I have described to you; for, though all the principal ribs grow from the same stalk, like those in the umbel of the shepherd’s needle, there are no umbellules, the smaller stalks not being regularly arranged.

The character of the umbelliferous tribe is in part, also, taken from the structure of the flower itself. In umbellate plants, the corolla has five
petals, with a stamen between every two; and two styles, each with a single summit,—which rise from the centre of the flower, and remain after the petals and stamens fall off, so as to crown the two seeds. The calyx in this tribe is called an Involu'crum, and is in general not very distinct.

Now look at your Elder, and you will see that the blossom, instead of having five petals, is of one piece, divided into five parts: there are, it is true, five stamens; but there is no style; and you will more frequently find three summits than two. The fruit of the elder is a soft berry; but in the unbelliferous tribe, it consists of two dry and naked seeds.

The branches of the elder tree are full of a very light kind of pith, but the wood of the trunk is uncommonly tough and close grained. You will generally find that stems which contain the most pith are protected on the outside by wood that is particularly strong and elastic.

EDWARD.

Why does the gardener spread elder leaves near mole-hills?

MOTHER.

To keep away the moles, which will not come near elder. You may have seen the coachman also fixing branches of it on the horses' heads, to keep off the flies, for few insects can endure the smell of
this plant. The faculty that most animals possess, of distinguishing plants from each other by the smell or taste, and of avoiding those which are noxious, is very extraordinary, and of great importance to them. If all plants were equally wholesome to animals of every kind, some animals might deprive others of subsistence; whereas, at present, each kind has its appropriate food, which accords with their senses of smell or taste, and cannot feed on other vegetables without suffering.

The common Elm-tree, Ul'mus campes'tris, is in the order Digynia of this class. It is a native of Britain, and the wood is very serviceable, where it can be kept, constantly, either dry or moist. It is used for water-works, mills, pumps, and keels of boats, from its not being disposed to split or crack; and coffins also are made of it, because it lasts longer under ground than most other timber. The clearness of the grain makes elm particularly fitted for carved works, and architectural ornaments. — Silk-worms devour the tender leaves with great avidity. The flowers have a smell resembling that of violets; but, in this country, they do not produce perfect seeds, and the tree is propagated by suckers and grafts. The city of Ulm, in Germany, derives its name from the great number of Elm-trees that grow in its neighbourhood.

The North American Indians hollow the trunks of the red Elm, Ul'mus america'na, into canoes,
some of which, made out of one piece, will hold twenty persons. Bears and wild cats sometimes live in the hollow stems of these trees during the winter months.

Samphire, Crith'mum marit'imum, is in the same class and order with the Elm:—it grows wild on the sea-shore, but is never covered by the water; and a knowledge of this was useful, in a way that might not have been expected, to some French sailors, who were shipwrecked near Beachy-head, in Sussex. The vessel, to which these poor men belonged, was driven on shore by a storm, in the month of November, 1821;—the whole crew were washed overboard; and only four escaped from the sea by climbing to the top of a heap of rocks which had fallen from the cliff above. It was a very dark night; and they expected every moment to be swallowed up by the waves, when one of them found a plant, growing among the rocks, which he knew to be samphire. As this convinced them that the tide did not rise so high, they knew that they were safe, and did not move from the place till day-break, when they were seen by the people on the cliffs, who immediately came to their assistance.

I shall conclude to-day, by telling you something about a few foreign trees, and our own useful plant, the Flax, which are in the class Pent-andria.
The Marking-nut tree, Semicarpus anacardium, is a native of woody mountains in the East Indies. It is a lofty tree, and bears a fruit which contains a black resinous juice, that is used in the East for marking linen. This is done by putting the linen over the nut, and pricking it till the juice comes through, which makes a stain that never washes out. The fleshy receptacle, when roasted, has the flavour of apples, and is eaten by the natives of India.

The forests of Java, Ceylon, and some other of the East Indian islands, afford a very valuable tree, called the Indian oak, or Teak-wood, Tectona grandis. The leaves, even of the young trees, are nearly two feet long, and more than a foot in breadth. The trunk grows to a great size, and the wood is the most useful timber of the East; it is supposed to be superior to every other for building ships, as the worms, which destroy deal and oak, do not injure it.

The order Trigynia contains, besides other genera, the Tamarisk-tree, one species of which Tamaria gallica, grows wild on the southern coast of England,—the Guelder-rose, or Snowball-tree, Viburnum Opulus,—the Laurustinus, Viburnum Tinus,—and the Sumach-tree, Rhus. The Varnish-sumach-tree, Rhus Vernix, produces the gum from which the Japanese make their beautiful black varnish.
The common Flax, *Linum usitatissimum*, in the order Pentagynia of this class, is one of the most valuable of plants; for every kind of linen is manufactured from the bark of its stalks; and linen, worn to rags, makes paper. It is said that the plant came originally from Egypt; but it is now found wild in many parts of England. The seeds afford linseed-oil, which is used in great quantities for painting; and after the oil has been pressed out, they form what are called oil-cakes, with which cattle are fattened. The Linnet has its name from the *Linum*, because flax-seed is its favourite food. You will be interested very much by reading an account of the method of preparing flax for making linen.

EDWARD.

Is all paper made of linen rags?

MOTHER.

No: what we most commonly use in England is so; but there are several other kinds, made of different materials. Paper was first manufactured in Europe about the year 1300; and it appears to have been first made of linen towards the beginning of the fourteenth century, but the inventor is not known. The first paper-mill in England was erected in 1588.

In ancient Egypt paper was made of the inner coat of the stem of the *Papryrus, Cyperus*
Papy'rus, a species of rush, in the class Triandria, which still grows on the banks of the Nile. The plant was much valued by the Egyptians, who applied it to several useful purposes, and it is often represented on their monuments. They made vases of the roots; and boats, of the stalks woven together and coated over with some resinous substance. When they had peeled off the bark of the stalk, they separated the inside into very thin layers, of which they made not only paper, but a kind of cloth for dresses. Their mode of making paper was to place a number of these layers close beside each other, with as many more ranged across them, and then to wet the whole with water, which made the different pieces stick together. When this was pressed and dried, it was equal to our paper in solidity and lightness.

In China, paper is prepared from the bark of several different trees; among others, of the elm and mulberry, but chiefly of the cotton-tree. Great quantities of paper are now made in Europe from cotton rags; but this is not so good as that from linen. Our blotting-paper is made principally of woollen rags; and our coarse brown paper, of pieces of old rope. I have seen, also, paper that was manufactured of silk, straw, sea-weed, and even of leather; this last kind was said to be particularly useful for packing, as it was water-proof, and did not easily tear or take fire.
The word Paper is derived from the Egyptian plant papyrus; and from the general custom among the ancients of writing on the leaves of trees, our books are still said to be composed of leaves.

Liber, the Latin name for a book, signifies also the inner bark of a tree, upon which also the ancients used to write; and Volumen, a roll, was the manuscript rolled up; — from whence come our words Library and Volume. The English word Book comes from the Saxon boc or beech, because beechen tablets were formerly used to write on.
CONVERSATION THE EIGHTH.

CLASS 6. HEXAN'DRIA.—GALAN' THUS NIVA' LIS, SNOWDROP, EXAMINED.—NECTARIES.—BARBERRY; ITS FILAMENTS.—SORREL.—AMERICAN ALOE.—INDIAN REED.—LARGE PLANTS OF HOT CLIMATES.—GREAT FAN-PALM.—ARISTOLO'CHIA.—ADANSO'NIA.—CLIMBERS.—TENDRILS.—TERMS EXPLAINED.—LIES.—BULBOUS ROOTS.—KAMSCHATKA LILY.

EDWARD.
What shall we do to-day, Mamma? I hope we shall examine a plant in the sixth class.

MOTHER.
I believe, my dear, that the Snowdrop is one of the best examples you can have; for the flower is very remarkable, and the only species which is known is a native of England.

EDWARD.
But the Snowdrop has done flowering long ago.

MOTHER.
Very true: it is one of our earliest spring flowers. You remember Mrs. Barbauld's beautiful lines,
which I gave you to learn in the winter, when you brought me the first Snowdrop from the garden.

EDWARD.

Already now the Snowdrop dares appear,
The first pale blossom of the unripen'd year:
As nature's breath, by some transforming power,
Had changed an icicle into a flower;
Its name and hue the scentless plant retains,
And winter lingers in its icy veins.

MOTHER.

We cannot, then, procure a living plant at present:—but I will read you a description of it, which you may compare with this drawing [Plate 9.], and you must not forget next spring to examine a real one. "The flower has six " stamens and one pistil:"—it is therefore in the class Hexandria, and order Monogynia. "There " is no cup, but instead of one a Sheath,"—a kind of calyx, of which this plant affords a very good example: and "there are six petals, three smaller " than the rest, standing within the other three, " and notched at the ends."

EDWARD.

How very different the small ones are from the other petals!

MOTHER.

For this reason they were considered by Linnaeus
Galaúthus nivalis _Snowdrop._

Class VI. **HEXANDRIA** Order **MONOGYNY.**
NECTARIES.

as distinct from the petals, and called by him the Nectaries. In the snowdrop, these three inner parts of the flower, whether we call them nectaries or petals, form the distinguishing character of the genus, which is named Galanthus.

EDWARD.

But when we were examining the wallflower, you said that the nectaries were little greenish bodies, surrounding the lower part of the short stamens.

MOTHER.

Yes; but I also told you, that nectaries had very different forms in different flowers.—The use of the nectary is very doubtful, but it is supposed to be intended to contain the honey. In monopetalous flowers, the tube of the blossom itself answers this purpose; but in flowers with several petals, and open calyxes, which have no tube to hold the honey, there is in general a distinct part intended for that use.

In some genera, the nectary is a sort of horn or spur, at the back of the flower, as you will see very distinctly in the Larkspur and Columbine. There is a genus in the fifth class, called Parnas'sia, which exhibits these additional parts in great perfection; and in one species, the palus'tris, which grows wild in England, the nectaries are particularly beautiful. There are five in every flower, placed
alternately between the stamens, and each of them consists of a little heart-shaped substance, beautifully fringed with bristles: every bristle bearing on its extremity a transparent yellow ball, which looks like melted wax. Here is a little drawing that will give you some idea of their figure. The English name of the Parnas'sia palus'tris is Grass of Parnassus.

But let us return to our Snowdrop.—"The fila-
ments, in the genus Galan'thus, are very short,
and the anthers end in a fine point like a bristle.
The pistil is longer than the stamens; the style
thread-shaped; and the germen is rather large,
roundish, and inferior;"—that is, placed below
the blossom, so that you can see it without pulling off the petals. The specific name of the snowdrop is nivalis.

EDWARD.

You have not described the leaves or the root.

MOTHER.

It is not necessary to do so, for the purpose of distinction, when there is but one species known of any genus. I have told you, you may remember, that the character of the genus depends upon the structure of the flower; and the distinctions between the species, principally upon differences in the roots, leaves, or other parts. But where there is only one species,—as of Galan'thus,
—we have not any others to compare it with, and cannot form a specific character.

EDWARD.
I like to examine plants that have but one species.

MOTHER.
It certainly is less difficult for a beginner, than when there are many; which is my reason for choosing such plants for you, when I can.

You already know that the Tulip is in the sixth class. One of the species, called the wild tulip, Tulipa sylvestris, is a native of England. It differs from the garden tulip, Tulipa Gesneriana, which grows wild in the Levant, in having narrow leaves, a flower that nods or bends downwards, and is fragrant: the pollen also, on the anthers of the native species, is yellow, instead of black.

The garden tulip was first brought from Constantinople, about the middle of the sixteenth century, to Vienna; whence it has found its way over all the rest of Europe.

The Pine-apple, Bromelia Ananas, that you see in the hot-house; Lily-of-the-Valley, Convallaria majalis; Asparagus, Asparagus officinalis; Hyacinth, Hyacinthus non-scrip'tus; Daffodil, Narcis'sus Pseu'do-Narcis'sus; Barberry, Ber'beris vulga'ris; Garlic, Allium Schoenopra'sum; and Sweet-rush, Ac'orus Cal'amus; are amongst the
plants in the first order of the sixth class. They are all natives of England, except the pine-apple, which is said to have come originally from South America; the fruit has its English name from the resemblance of its shape to the cone or seed-vessel of some of the pine-trees.

The garden Hyacinth, Hyacinthus orientalis, is a native of the Levant. The flower, in its simple or single state, was once admired on account of the regularity and equality of the petals; and double hyacinths were then no more valued than double tulips are now.

EDWARD.

What are double flowers?

MOTHER.

All flowers, which have a greater number of petals than usual, are commonly called Double;—but, strictly speaking, they should be called double, treble, quadruple, and so on, according to the number of rows of the petals. Great richness of soil, and high cultivation, have such an effect upon plants, that they grow very luxuriantly; and the stamens, in some kinds, are converted into petals. When all the stamens are changed in this way, the flower is called Full, and can no longer produce seeds; and in order to bring back the plant to its natural state, we ought to put it into a poorer soil;—or, in other words, to give it less food, or not of
FILAMENTS OF THE BARBERRY.

so rich a quality. Flowers with many petals often become full; but those of one petal are more disposed to be changed into double or treble, &c., which botanists call being Multiplied. In either state, they are generally thought to be more beautiful, and are very much valued by gardeners. A Dutch florist at Haerlem used to throw the double Hyacinths out of his collection; till, by accident, one of them attracted his attention, and appeared to be so beautiful, that he cultivated the plant, and raised others from it. These were so much prized, that he sold them at a high price, and afterwards cultivated double flowers with as much care as he had formerly taken to reject them: so that double hyacinths came into such request, that from one to two hundred pounds have been given for a single root.

The genus Allium includes every species of Leek, Onion, Shalot, and Garlic. The broad-leaved leek, Allium Por'rum, and the common onion, Allium Ce'pa, which are cultivated in almost every cottage garden in this country, are natives of Switzerland.

There is one circumstance relating to the Barberry that deserves particular attention. The flowers contain six stamens, each of them fastened by its lower part to one of the petals, which are also six in number: the filaments spread out a little,
and the anthers are covered by the upper part of the petals. If anything,—an insect, for example, in search of honey,—touches the filament near the bottom, it immediately contracts, and strikes its anther against the summit of the pistil; but any other part of the filament may be touched without producing this effect. The filament which has contracted gradually goes back of itself to its original position, and may be made to move as before, several times, without losing this property; and even when the petals fall off, with the stamens that are fixed to them, the filament still retains the power of moving.

The berries of the barberry are so very acid, that birds will not eat them; but we use them boiled with sugar as a sweetmeat. The leaves also are very acid. In Poland, the bark of the root is used for dyeing leather of a beautiful yellow colour.

Sorrel, Ru’mex Aceto’sa, and Meadow-saffron, Col’chicum autumnale, are in the order Trigynia of this class. The Laplanders use Sorrel in preparing a kind of whey from ‘reindeers’ milk, which will keep a long time.

Edward.

Is that the same kind of Sorrel that we sometimes eat, when we gather it in the fields?
ALOE. — RICE.

MOTHER.

Yes; and it is also used in salad. In France another species, Ru'mex scuta'tus, French sorrel, is cultivated for the table.

I must not omit the Aloe, which was first introduced into Europe from America, in the year 1561, and is now planted for hedges in Spain, Sicily, and Calabria.

It is a common opinion that this plant blossoms only once in one hundred years; but the time of its flowering depends on the quickness of its growth: so that in hot countries, where it grows fast, it blossoms after a few years, but in colder climates it is much longer before even the stem shoots up. When vigorous, it grows to the height of more than twenty feet.

The tallest aloe of which there is any account, was in the King of Prussia's garden, and grew to forty feet high. In another plant, which flourished in Cheshire, in the year 1737, the stem began to appear in June, and grew five inches a day for some weeks; the flower branches were perfected in twelve weeks, and then ceased to grow for a month, while the buds were forming. This plant produced one thousand and fifty flowers; but one that blossomed at Leyden, in 1760, produced more than four thousand.

The Rice-plant, Ory'za, is in the order Digynia of this class; but has the form and structure of the grasses, and differs from them only in the num-
ber of the stamens. Linnaeus was acquainted with but one species, the Ory'za sati'va; but I believe that others have been since discovered. The common rice, a native of India, is cultivated throughout the East, where it is of the greatest importance to the inhabitants as an article of food.

The Indian Reed, Cal'amus petræ'us, is another plant of the class Hexandria, which also resembles a grass in some respects; but the stems grow to more than a hundred feet in height, and are then at least as thick as a man's arm. They are used in Cochin-China for making soldiers' pikes; and the inner part of the young shoots is eaten by the natives. Another species of Cal'amus, the ro'tang, or ratan, has very smooth glossy stems, marked with dark spots: it grows abundantly on both sides of the Straits of Malacca, from whence it is sent into Europe. The long spaces between the joints are used for walking-canies. There is a third species, Cal'amus ver'nus, very common in forests in the East Indies; though not thicker than a man's finger, it often grows to the length of more than a hundred feet, and when split into strips, is used for making ropes, the seats of chairs, and different parts of several other articles of furniture.

EDWARD.

How very large the plants in India seem to be!
LARGE PLANTS OF WARM CLIMATES.

MOTHER.

In all hot countries vegetables grow to a much greater size, and are found in greater abundance than in cold climates, where they are very diminutive, and few in number. The difference of size in going south from England begins to be perceived even in Italy, where the millet, a sort of corn, attains the height of four or five yards. In the Island of Jamaica, in Madagascar, and on the coast of Coromandel, botanists have hitherto found from four to five thousand native species; in Piedmont, two thousand eight hundred; in Brandenburg, two thousand; in Sweden, about thirteen hundred; in Iceland, five hundred and fifty-three; in Lapland, five hundred and thirty-four; in Spitzbergen, only thirty.

In the East Indies there is a plant called the great Fan-palm, Cor'ypha umbraculif'era, with leaves more than six yards in breadth, which have the form of an umbrella; and a species of Aristolo'chia*, that grows on the banks of the river La Madalina, in South America, has flowers of such great size, that the children use them in play for hats. Another species of this genus, Aristolo'chia Clemati'tis, grows wild in our woods and hedges.

The Monkey's Bread-tree, Adanso'nia digita'ta, is found on the banks of the river Senegal in Africa,

* Class Hexandria, of Withering; but in the twentieth class, Gynandria, of Linnaeus.
and has its name from M. Adanson, a French traveller, who resided several years in that country. The roots often spread to more than a hundred feet around; the top is crowded with great branches, like trees, which run out from it in all directions, and touch the ground at their extremities; and though the stem is not more than twelve or fifteen feet high, it is often from eighty to ninety feet round. You will not, then, be surprised to hear that whole families of negroes sometimes live in the hollow trunk of this tree; which is remarkably long lived, and has been even computed to live more than a thousand years.

Near the equator, too, gigantic climbers are found, which grow to the length of several hundred yards.

EDWARD.

What are Climbers?

MOTHER.

Plants which are unable to support themselves, but take advantage of whatever is near to raise themselves upon; such as the Vine, and Virgin's bower. I am glad that you have asked this question; and whenever I mention any thing that you do not quite understand, you must not hesitate to say so. Many climbers are furnished with tendrils or claspers, with which they take hold of whatever can support them: some of these twist
themselves round their prop from left to right, or according to the apparent motion of the sun, as the Honey-suckle and black Bryony; and others, on the contrary, from right to left, as the great Bindweed. In some instances, as in the black Bryony, the tendril twists itself a certain number of times one way, and then takes a contrary direction, probably for the purpose of securing a more certain hold. The common Ivy is a climber; and what are generally mistaken for the roots, are in reality tendrils, that grow in the form of small fibres along the stem or branches, on the side next the supporter; insinuating themselves into the very substance of it, if a vegetable, and fixing themselves like real roots, or clinging, even to naked walls; for they are covered with hairs, which yield a gluey substance, that fastens them to the smoothest surfaces.

EDWARD.

Then Hops, I suppose, are climbers?

MOTHER.

Yes; and the poles are used to encourage their growth, by giving support to the young branches. In countries where wine is made, entire fields are planted with vines, which are supported on poles, just like the hops that you have seen in Kent and Surrey. And now, while I recollect it, I will tell you the distinctions between the terms Tree, Shrub,
Under-shrub, and Herb, which are frequently employed by botanists.

Trees bear flowers for several years in succession, and send up a lofty trunk, divided, at the top, into many branches.

A Shrub is like a small tree; with a woody stem, which lasts many years also, but begins to be divided into branches near the ground.

An Under-Shrub is described by Decandolle, a French botanist, as a plant, of whose stems, the lower part only is woody; but the upper part, being of an herbaceous nature, dies every year.

Herbs, or Herbaceous plants, have soft, not woody stems. If they bear leaves and seeds within one year and then die, they are called Annuals; when they bear leaves in the first year, and flowers in the second, and then die, they are Biennials; and if they live and flower for more than two years, they are called Perennials.

The Oak, and Horse-Chestnut, are trees; Myrtle and Privet, are shrubs; Candy-tuft is an under-shrub; Parsley and Mint are herbs.

Climate and cultivation have great effect upon the growth and duration of all plants; so that, in warm climates, the shrubs of cold countries attain the size of trees; and, in a few instances, even herbaceous plants become as large as the trees in our orchards. On the contrary, the trees of warm or temperate climates dwindle into shrubs in cold
countries. The colours, too, of tropical flowers, particularly those of Asia, are much richer and more variegated than in those of cold climates, which are principally white and blue.

EDWARD.

What is the meaning of Tropical?

MOTHER.

It is a term used in geography, which you will find explained in books on that subject.—The space that lies between what are called the Tropics is more directly under the influence of the sun, and much warmer than any other part of the globe. But I used the words Tropical plants, only to signify those which grow in the warmest climates of the world.

I must not omit the Lilium, a genus which belongs to the sixth class, and one of the most important in a very numerous tribe, which bears the general name of Lilies. The flowers of this genus are very beautiful, being shaped like a bell, and composed of six petals, generally of the most brilliant colours. The roots are round, fleshy Bulbs;—a sort of root of which there are several different kinds, and of which the Crocus and Snowdrop afford good examples. [Plates 5. and 9.] In the tulip the bulb is solid, hard, and smooth: in the lily it is scaly, something like the skin of a fish,
or the cup of a thistle: and in the onion it is coated, — which means, composed of layers one over another.

Bulbs are commonly considered, and very often described, as roots; perhaps because they are lodged entirely in the ground when planted by the gardener; but the true root of the plant is, not the bulb, but the fibres that issue from its under surface; and if these are cut away, the bulb will not grow. Linnaeus calls the bulb the winter quarters of the future plant, furnished with a root suitable to its peculiar structure.

EDWARD.

Are turnips bulbous roots?

MOTHER.

No; but they are sometimes described as such. What we call the turnip, and generally consider as the root, is only a kind of intermediate stem, swelled into a bulbous form, between the real stem and the root.

The bulbous roots of the Kamschatka Lily, Lilium Camschatcense, called by the natives Saranne, forms a principal part of the food of the inhabitants of that country; and, fortunately for them, it is very abundant; all the grounds in Kamschatka blooming with its flowers during the season. At the periods when fish is scarce, the Saranne is plentiful; and at other seasons, the rivers supply
provision. The roots are gathered by the women, dried in the sun, and laid up for use. After being baked, they are ground to powder, or flour, of which the best Kamschatkan bread is made; and they are also sometimes eaten like potatoes.

But it is not to the labour of the women alone that the Kamschatkans are indebted for a stock of these roots; a species of mouse saves them a great deal of trouble in procuring it. The Saranne forms part of the winter provision of that little animal, which not only gathers them in the proper season, and lays them up in its magazines, but has the foresight to bring them out to dry in sunny weather to prevent their decaying. The natives search for these hoards; but always take care to leave a part for the mice, to save those useful little creatures from perishing for want of food.
CONVERSATION THE NINTH.

MOTHER.

We are now come to the least numerous of all the classes, the seventh, Heptandria, of which there is but one genus native in England; and of that only one species is known, the Chickweed Winter-green, Trienta'lis europæ'a. It grows in woods, and on turfy heaths in the northern counties, but you are not likely to meet with it in our own neighbourhood.

The Horse-chesnut, ÂEs'culus Hippocas'tanum, in the first order of the class Heptandria, is a native of the northern parts of Asia, whence it was introduced into Europe, about the year 1500. There are several Horse-chesnut trees in our plantations,
and you know how beautiful the buds and flowers are, in the months of April and May. The tree affords a fine shade while the leaves remain upon it; but as they begin to fall off in July, it soon loses its beauty. Deer are particularly fond of the nuts; which, in Turkey, are ground and mixed with the horses' food; and in England a paste or size is prepared from them, which is preferred by bookbinders and paper-hangers to that made from wheaten flour.

EDWARD.

Is the wood of the Horse-chesnut made any use of?

MOTHER.

None, that I know of, except for water-pipes underground; but I have heard that the bark is sometimes used in medicine. The prickly husks of the nuts are used in tanning leather.

In England and all cold climates, trees and shrubs are universally provided with buds: which seem to be intended to protect the new parts about to be added to the plant, from the cold; since the same trees which are furnished with them in our climate do not produce buds in hot countries. The bud of the Horse-chesnut is remarkably large and beautiful.

The eighth class, Octandria, contains a very numerous and beautiful genus, that of the Heaths, Eri'ca, which is confined entirely to Europe and
the southern parts of Africa. The country about the Cape of Good Hope is, of all others, the most abundant in them; and the Cape alone, it is said, produces more than two hundred and fifty species. It is remarkable that no species of this genus has been discovered in New Holland, Asia, or the continent of America; and, what is still more extraordinary, they do not occur between the tropics, although they are found both in the Northern and Southern hemispheres, in corresponding latitudes. The heaths in general are not fragrant, but the *Eri'ca o'dor-ro'sea* has a scent like otto of roses, and the *tenuiflo'ra* has the odour of a carnation.

Our native heaths, of which there are five species, though inferior to the foreign ones, are very beautiful. The most common, *vulga'ris*, is very useful to the poor inhabitants of the north of Scotland, who make beds, and thatch the roofs of their cottages, with it. In England and Ireland, brooms are made of its branches; and in the island of Islay, one of the Western Isles, ale is sometimes made of the young tops, with the addition of a little malt. Bees extract a great deal of honey from the flowers of heath.

Here is a drawing of the Mezereon, [Plate 10.] a plant in the order Monogynia of this class; which you must be contented with for this year, as the plant itself flowers in February and March, and is now out of blow.
Daphne Mezereum... Common Mezereum.

Class VIII. OCTANDRIA Order MONOGYNIA.

Published Jan 7 1828 by Longman & Co.
Then you will read a description of it, while I look at the drawing; and next spring we can try to find some real Mezereon in the hedges.

MOTHER.

It is not a very common plant, and I do not think you will find it growing wild in this part of the country; but that in our garden is of the same species; and will do as well for examination. The generic name is Daph’ne, and the characters of the genus are these:—"It has no calyx; the blossom is of one petal, shaped like a funnel; the tube of the blossom is longer than the border, which last has four flat divisions, ending in points. There are eight stamens, growing on the inside of the tube, in two rows; four of them below the other four, but placed alternately. The germen is egg-shaped, and contained within the blossom; the style very short. The seed-vessel is a pulpy round berry, which contains a single seed."

Withering mentions two native species; and the character which distinguishes the Meze’reum, of which the English name is Mezereon, or Spurge-Olive, consists in the flowers being Sessile, or sitting close, without any flower-stalks, and growing upon the sides of the stem, generally three toge-
ther. The leaves, which are spear-shaped, grow from the ends of the branches, and fall off in the autumn. The berries are red; and Linnaeus says they are so poisonous, that six of them will kill a wolf. The merezeon does not produce its flowers till January or February; but if a bud is dissected in the month of August preceding, the petals, the stamens, and all the parts of the young fruit, may be distinctly perceived.

EDWARD.

Is Mezereon a shrub or a tree?

MOTHER.

It is only a shrub; as you may perceive from its throwing out branches so near the ground.

There is another species of Daph'ne, the Laget'to, called the Lace-bark-tree, from the resemblance of its inner bark to net-work or lace. This bark is very beautiful, and consists of several layers, which can easily be pulled out into a fine white silky web, three or four feet wide, like lace or gauze, which has often been used for ladies' dresses; and Swartz, a celebrated botanist, says that it may be washed without injury. King Charles the Second is said to have had a cravat made of this web, presented to him by the governor of Jamaica; of which island, and of Hispaniola, it is a native.

The common Maple, A'cer campes'tre, and the
Sycamore, or Plane-tree, \(\text{A} \text{c} \text{e} \text{r} \ \text{Pseu}^\prime \text{do-plat}^\prime \text{anus}, \) are placed by Withering in the same class and order as the Mezereon*, and both are natives of England. The wood of the first species is much used by musical instrument-makers, on account of its lightness; and that of the Sycamore is one of the best that can be employed for turning:—it was in universal use for trenchers, before the introduction of earthenware. The Sugar-Maple, \(\text{A} \text{c} \text{e} \text{r} \ \text{sacchari}^\prime \text{nus}, \) grows in great abundance in Pennsylvania, where the inhabitants make sugar in large quantities from the juice or sap, which they obtain by piercing the stem of the tree in spring. This sugar is made nearly in the same manner as that procured from the sugar-cane, of which I have already given you an account.

The Whortle-berry, or Bilberry, \(\text{Vaccin}^\prime \text{i} \text{um myrtil}^\prime \text{lus}, \) and Cranberry, \(\text{Vaccin}^\prime \text{i} \text{um o} \text{xycoc}^\prime \text{cus}, \) are in the first order of this class, and grow plentifully in Scotland and some parts of England. Whortle-berries are the principal food of the moor-game in Scotland; and Cranberries are so much liked for making tarts, that they are brought to London from the northern counties of England, and even imported from Russia; as are the berries of another species of Vaccin'ium, the Macro-

* In the twenty-third class, Polygami'a, and order Monœcia, of Linnaeüs.
car'pon, nearly resembling the European, but with larger fruit, from North America. In China, the Vaccinium formosum is a sacred plant: the flowers are gathered at the beginning of the Chinese year, and placed in all the temples as an offering.

The Hazel-nut-tree, Corylus avellana, in the order Digynia of this class, according to Withering*, grows very commonly in our woods, and its timber is used for several different purposes. I need not describe the nuts to you, for you saw them yesterday at dinner. Squirrels live almost entirely upon them, and the leaves of the trees are eaten by horses.

EDWARD.

What is the tree that produces Walnuts?

MOTHER.

The Juglans regia, which was originally brought from Persia, but now grows commonly in this country. The genus Juglans is in the class Monoecia of Linnaeus. The tree grows to the height of fifty feet, and bears large green clusters of fruit, inclosing furrowed nuts, which ripen in September and October. The young fruit is

*Class twenty-one, Monoecia, order Polyandria, of Linnaeus.
pickled, and, when ripe, the kernels are eaten. It is from these nuts that what is called Nut-oil is obtained, but the hazel-nut also affords a kind of oil which is used by painters. The wood of the Walnut-tree takes a fine polish, and was formerly much used in furniture: its principal use at present is, for making gun-stocks, for which purpose the king has plantations of the tree in different parts of England.

The Amy'ris Gil'eadensis, Balm of Gilead, is a shrub in this class and order, which grows in Judea and Arabia, and produces the resin or gum celebrated in Scripture for its medical virtues. It is so highly valued by the Turks, that its exportation is prohibited.

I had almost forgotten to tell you, that the Poplar, of which there are three or four native species, belongs, according to Withering, to the order Monogynia, of the eighth class.* The bark of the trembling Poplar, or Aspen-tree, Pop'ulus trem'ula, is the principal food of beavers; and Linnaeus mentions that it serves as fodder for cows, goats, and sheep, in West Bothnia, a part of Sweden, being cut into very small pieces in autumn, and laid up to dry till the following spring, when it is used instead of hay, which is very scarce there at that season. The wood-pecker is very fond of the

* Class and order Dioecia Octandria, of Linnaeus.
Aspen-tree, for the bark is so soft that he can easily make his nest in it; and great numbers of insects are to be found in the decayed wood.

The poplar is the fittest of all trees for raising a shade quickly; it sometimes grows fourteen feet in a single season. The bark of the black Poplar, Populus nigra, is so light, that it is sometimes employed by fishermen, instead of cork, to support their nets in the water.

EDWARD.
But what is real Cork?

MOTHER.

It is the outer bark of a species of Oak, Quercus suber, a genus placed by Withering in the class Octandria, which grows in the south of Europe and the north of Africa.

The Cork-tree does not begin to be productive until it is fifteen years old; and even then the bark is only fit for fuel: nor does it arrive at perfection till about the twenty-third year; but from that period it continues to yield good cork every tenth year, for about an hundred and fifty years. The season for stripping off the cork is in July and August, and great care is taken not to wound the inner bark, which in time becomes good cork also.

* Monocca Polyandria, of Linnaeus.
Cork. — Oak.

The best sort comes from Spain and Portugal; and is imported in great quantities into England, where it is cut into corks for bottles, and applied to many other purposes. The Spaniards cover the walls of their houses with cork, like wainscoting, which not only makes them warm, but very dry; and the peasantry in Spain lay broad planks of it at their bed-sides, as we do carpets; they also burn it to make what is called by painters Spanish black. The Egyptians formerly made coffins of cork lined with resin, which preserved their dead bodies for a very long time.

Two species of Quer'cus, or Oak, grow naturally in England, one of which, the Quer'cus ro'bur, is of great value; it is, indeed, the most valuable of all our native trees. The oak is remarkably long-lived, and attains a great size, the full-grown tree sometimes measuring from fifty to sixty feet round. The wood is hard and tough, it takes a good polish, and, when well manufactured, has a very handsome appearance. The roofs and frame-work of almost all our ancient buildings which are the best preserved are formed of this timber; and it now always employed where strength and durability are required. The crooked branches of the oak are of peculiar value in building ships, and there are extensive forests in England belonging to the King, which are reserved entirely for that purpose. Oak saw-dust is one of the principal

F 6
vegetable ingredients used in dyeing the different shades of brown and drab colour. The bark of the tree is universally employed for tanning leather; and the acorns or fruit, which enclose the seed, for fattening deer and pigs. The tree is at least one hundred years attaining its utmost perfection: it continues vigorous for perhaps a hundred more, and then begins to decay. At Calthorpe, near Wetherby, in Yorkshire, there is an oak which measures seventy-eight feet in circumference close to the ground, and forty-eight feet at the height of a yard. It is said to have begun to decline in the reign of Queen Elizabeth; and though now much decayed, is still likely to stand for many years.

Those light spongy bodies, about the size of walnuts, called oak-apples, which you have often seen, are excrescences that grow from the leaves and other tender parts of the oak, when wounded by insects in depositing their eggs: they are called also Galls; and there are several different kinds, produced by the wounds made by different insects. Some of them are very useful in dyeing black, and the common gall is an essential ingredient in the ink that we write with. It is extremely bitter and astringent; but the galls of the Salvia pomifera, Apple-bearing Sage, a plant in the class Diandria and order Monogynia, are said to be of a very pleasant flavour, and are considered as a great delicacy in eastern countries.
Bútomus umbellátus — Flowering Rush.
Class IX. ENNEANORDRA — Order HEXAGYNIA.
The plants of the ninth class, Enneandria, are so few in number, that I think we can go through them to-day; and I dare say it will give you pleasure to examine this one, which I have just procured for you. [Plate 11.]

EDWARD.
How beautiful it is! I long to find out its name.

MOTHER.
That you can easily do; for there are but three native genera in this class, according to Withering, and only one in the arrangement of Linnaeus. Here, hold the plant in your hand, while I read what Withering says about the genera.

The first genus described, Mercurialis*, is in the order Digynia; "it has no blossom, and the flowers with stamens are on different plants from those with pistils:"—we need not read any farther, for your plant, having six pistils, is in the order Hexagynia; and it has both stamens and pistils in every flower.

In the second genus, Butomus, "the calyx, which is called an Involucrum, is composed of three leaves."

* In the class and order Monoeia Enneandria, of Linnaeus.
EDWARD.

But these flowers have no calyx.

MOTHER.

It is true that each flower has not a separate calyx: but if you look at the top of the stem, from which the flower-stalks grow, something in the manner of an umbelliferous plant, you will perceive three sharp-pointed brownish leaves, that form a sort of a general calyx, to the umbel or set of flowers: this is called an Involu'crum. "The "blossom is round, hollowed out like a bowl, and "composed of six petals; three of them smaller "than the rest, and standing alternately on the "outside between the others. There are nine sta- "mens, the filaments are awl-shaped, and the an- "thers composed of two flat pieces laid close toge- "ther; and six pistils, each consisting of a germen, "which gradually passes into a style, with a sum- "mit slightly notched."

In the next genus of Withering, Hydrocha'ris*, the stamens and pistils are in the flowers of differ- ent plants:—so that Bu'tomus must be our genus, of which there is but one species known, called Umbella'tus, from the resemblance of its sets of flowers to an umbel. The English name is Flower-

* Class and order Dioecia Enneandria, of Linnaeus.
ing-Rush, and it grows on the margins of lakes and slow-running rivers.

EDWARD.

I wish we could always have real plants to examine; it is so much more easy to remember them than the drawings.

MOTHER.

So do I, my dear; and I hope we shall succeed in finding some in the classes that we have still to go through; but it is not possible to obtain them all at the same period of the year.

The genus La'rus, or Laurel, is in the order Monogynia, of the ninth class; but none of the species grow wild in England.

The sweet Bay-tree, Lau'rus nob'ilis, is a native of Italy, and is said to be the Laurel of the ancients, with which they crowned their generals when they gained victories. It is a fine aromatic evergreen, and grows to the height of thirty feet.

The cinnamon-tree, Lau'rus cinnamo'mum, is a native of Ceylon, where it grows commonly in the woods and hedges, and is used by the Ceylonese as fuel. The whole plant is covered with a bark, which is at first green, and afterwards red: when the tree is three or four years old, this bark is peeled off and cut into narrow slips; and these, when dried in the sun, curl up into flakes like
quills, which are the Cinnamon we see in the shops. That of Ceylon is more highly flavoured than what is produced in any other country. The fruit of the tree is shaped like an acorn, but not so large. A kind of pigeon that feeds on this fruit is very useful in propagating the tree in Ceylon; for in carrying it to its young, it often drops it in different places, where it takes root. When the seeds are boiled in water, they yield an oil, that hardens into a white substance, which has a delightful smell, and is made into candles at Ceylon; but only for the use of the king.

The Lau'rus campho'ra, or Camphire-tree, is so called from its affording what is called Camphire; a white brittle substance, which is so inflammable, that it burns even on the surface of water. This species grows in Japan, and is there a large and valuable timber-tree; it is used in the best buildings, and for the masts of ships.

Rhubarb, Rhe'um, is an herbaceous plant in the order Trigynia of the ninth class. The common sort, Rhe'um Rhapon'ticum, is a native of Turkey in Asia, but is frequently cultivated in our gardens; and we use the young leaf-stalks in spring for tarts. The Chinese Rhubarb, Rhe'um palma'tum, and another species that grows in Tartary, Rhe'um com-pac'tum, have thick, fleshy, yellow roots, which are much used in medicine. The Rhe'um palma'tum is a remarkably quick-growing plant, and the stem
has been known to grow upwards of eleven feet in three months; some of the leaves are five feet in their largest extent; and the root, which remains in the ground during the winter, grows also to a very large size. Roots of five years old, produced in this country, have been sometimes found to weigh more than seventy pounds when fresh.

We shall leave the tenth class till to-morrow; for I think you have heard quite enough for the present.
CONVERSATION THE TENTH.

MOTHER.

The common strawberry-tree, Arbutus unedo, is one of the species most remarkable for beauty amongst the native plants of the class Decandria: it belongs to the order Monogynia, and grows wild in Ireland, Italy, and Spain. It flowers in November or December, but the fruit does not ripen till the following winter; and it is singular to see, at that season, a tree in the open ground covered with both flowers and fruit; for, when the fruit is ripe, and still remaining on the tree, the flowers for the succeeding crop are in full bloom.

Plants that flower the earliest do not always ripen their fruit the soonest: the Hazel blows in
February, but does not ripen its fruit till autumn; while the Cherry, which does not blow till May, is ripe in June. It may be taken, however, as a general rule, that if a plant blows in summer, it ripens its fruit in autumn,—as is the case with the Vine; and if it blows in autumn, the fruit is ripe in the winter: but the Meadow-Saffron, though it blows in the autumn, does not ripen its seeds till the succeeding spring.

EDWARD.

The Arbutus berries look like strawberries:—I have tasted some of them in the shrubbery, but they were not very good.

MOTHER.

They are insipid; but they are sometimes eaten by the country people in the south of Ireland, where this tree grows abundantly and in great perfection,—especially among the rocks of the Lakes of Killarney.

The black-berried Strawberry-tree, Arbutus alpína, which grows on mountains in Scotland, flowers in June and July, and bears a fruit that resembles black currants, both in shape and flavour.

The second order, Digynia, of this class, contains the genus Saxifræga, or Saxifrage, of which there are several native species. London Pride,
Saxifraga umbrosa, is one of them; and although this plant is so common in all our gardens, its natural situation is on high mountains.

The beautiful genus of Pinks, Dianthus, which includes all the varieties of Carnations and Sweet Williams, is also in this order; and there are five or six native species of it. The fine double Carnations, that are so much admired, are only varieties of the common Pink, Dianthus caryophyllus, which in its wild state bears single flowers. But a botanist considers every thing as a deformity that is not natural to a plant in its uncultivated state. If I wished to examine the botanical characters of a species of Dianthus, I should choose a wild specimen with a single flower.

EDWARD.

But don't you like double Carnations a great deal better than single Pinks and Sweet Williams?

MOTHER.

I certainly do admire the wonderful variety and beauty of their colours.—Can you read these lines?

EDWARD.

Where is the labour of the loom
Can vie with the Carnation's bloom?
He who can thus adorn a flower,
That's doomed to perish in an hour,
Forbids his creatures to despair
His universal love to share.
Agrostemma Githago Corn Cockle.
Class X. DECANDRIA - Order PENTAGYNIA.

Published April 2, 1828, by Longman & Co.
AGROSTEM' MA GITHA' GO EXAMINED. 117

MOTHER.

Here is the plant that I have brought in this morning to examine. [PLATE 12.] Can you tell me its class and order?

EDWARD.

It must be in the tenth class, Decandria, and the order Pentagynia; for it has ten stamens, and five pistils.

MOTHER.

Very well; now compare it with this description:—"Calyx, a cup of one leaf, of a texture "something like that of leather, with five sharp "divisions; blossom composed of five petals; the "lower parts of the petals, which are called Claws, "as long as the tube of the cup; border of the "blossom spreading out. The filaments are awl-"shaped, and the styles of the pistils thread-"shaped, as long as the stamens, with undivided "summits." This is the generic character of Agrostem'ma, and you see it answers very well.—There is but one species native: the specific character consists in the whole plant being hairy; the cup having ten ribs, with divisions reaching beyond the blossom; and the petals being undivided, and without down or hair. The English name of the plant is Corn-Cockle, and the botanical name Agrostem'ma Githa' go.
I think I have seen it in corn-fields.

I dare say you have, for it grows in abundance amongst corn, where it is a troublesome weed.

What a thick calyx this flower has, with such delicate petals!

The use of the calyx is to protect the other parts before the flower opens, and afterwards to support them in their proper places: its figure varies a good deal in different flowers; and it is sometimes altogether wanting; — as in the tulip, which has fleshy and firm petals standing on a broad and firm basis, that do not want support. Carnations, on the contrary, whose petals are particularly long and slender at the lower part, and would be apt to break, have a calyx composed of one piece, which is indented at the top, that it may fold over the petals before they expand, and support them better, when the flower is in full blow, by spreading under them. In some flowers, where the petals are very long and slender, the calyx is composed of several pieces, lying over each other like the scales of fishes.

The pretty little Wood-Sorrel, Oxa'lis aceto-
sel\la, is in the same order with the corn-cockle. The leaves, which are like those of the trefoil, close up on the approach of rain; and open again when it is dry. They are very acid, like those of the common Sorrel, Ru\'mex aceto\'sa; and a salt is prepared from them, which is sold in the shops under the name of essential salt of lemon.

By the opening and shutting of several flowers as well as leaves, we are enabled to judge of the state of the atmosphere. If the Son\'chus Siber\'ica, Siberian Sow-thistle, shuts at night, the following day will probably be fine, but if it remain open it will be cloudy and rainy. When the African Marigold, Tage\'tes erec\'ta, continues shut long after its usual time of opening in the morning, rain is nearly approaching; and the Convol\'vulus arven\'sis, small Bindweed, and Anagal\'lis arven\'sis, scarlet Pimpernel, even after they have opened, shut themselves up again on the approach of rain. —From this circumstance, the Pimpernel has obtained the name of the poor man's weather-glass.

EDWARD.

Are there any trees in the tenth class?

MOTHER.

I do not know of many, and none of them except the Ar\'butus are native: but I will tell you of a few foreign ones that I recollect.
The Lig'num-Vi'tæ-tree, Guai'acum officina'le, in the order Monogynia of this class, is a native of the West Indies. The wood is so heavy that it sinks in water, and so hard that it often breaks the tools which are employed in cutting it down: it is, therefore, seldom used for common purposes; but is used by sugar-planters, for making wheels in their sugar-mills, and is frequently made into bowls, mortars, and other utensils for which very hard wood is necessary.

It is said that the wood, bark, the gum, which is called Gum-guaiacum, the fruit, and even the flowers of this tree, are useful in medicine.

The Logwood-tree, Hæmatox'ylon Campechi'a'num, which is of the greatest use in dyeing, and in staining wood, is a native of South America. It is very heavy, and is brought to Europe in logs of about a yard long, which are cut and bruised by a mill before they can be used by the dyer.

The Brazil-wood, Caesalpi'nia Brasilien'sis, which is used for similar purposes, particularly for dyeing cloth of a beautiful scarlet colour, comes from the West Indies. The wood is very hard and dry, of a red colour, and takes a good polish.

The Egyptian Cassia, or Senna-tree, Cassia senna, which produces the leaves that are used in medicine, is a native of Persia, Syria, and Arabia. The leaves are gathered in those countries, and sent to Alexandria in Egypt, from whence they are brought to Europe.
The Locust-tree, Hymenéa Courbáril, which grows in the West Indies, produces from its roots a fine transparent resin, called in the shops Gum-an'ime, which, when dissolved in spirit of wine, makes a very fine varnish. The wood of the tree is remarkably heavy.

The Mahogany-tree is the last I shall mention in this class. Its botanical name is Swieténia Mahogáni; and it grows in the warmest parts of America, and some of the West India islands. The seeds, which are very light, are often blown into the chinks of rocks, where they take root, and sometimes produce trees of considerable size; and the wood of those that spring in this manner, from exposed situations, is harder and better than what grows in other places.

Mahogany is more used than any other timber for cabinet-maker's work, because it takes a fine polish, and is very durable. It was first brought to England about a hundred years ago, by a West India captain, as ballast for his ship; but was too hard to be cut with the common tools used by carpenters, and was laid aside as useless. Afterwards, it is said, the captain's wife being in want of a box to hold her candles, thought that a kind of wood so hard would answer very well for keeping out the mice, and she had stronger tools employed to make one. The wood was then found to be so beautiful, that the fame of mahogany became ge-
eral, and it has ever since been imported in large quantities.

I do not wish to tell you any thing more at present, my dear, as it will be better for you to remember well what you have already heard; and if you try to learn too much at one time, you can retain nothing in your memory.

To-morrow we will go into the village, and look for some Houseleek; which grows on the roofs of cottages, and the tops of old walls. It is the best plant of the eleventh class, that I can think of, for examination; and there is but one native species: but we must try to find some of it growing in different situations, for a reason I shall tell you when we examine the plant.
CONVERSATION THE ELEVENTH.

EDWARD.

Are you ready now, mamma, to read a description of the Houseleek?

MOTHER.

Yes, my dear. — But I wish I could have procured a flower that would show the character of the class Dodecandria more distinctly: since the number of stamens varies, under different circumstances, even in the same species, of the genera which are native. The Houseleek, however, is certainly placed in this class by botanists. Can you tell me the order it is in?
I suppose it is Dodecagynia, for I see twelve pistils, and I think you told me that whenever there were about that number in each flower, the order was called so.

You are right. The number of the pistils in the genus Sempervium, to which this plant belongs, is commonly twelve; but it often varies. Here, then, is the description.—[Plate 13.] "The calyx is a cup, of one piece, with twelve or more sharp divisions: the blossom is longer than the cup, and composed of the same number of sharp petals, each of which is fringed with fine hairs. The number of stamens is, in general, the same with that of the petals:" but frequently, in this species, some of them are imperfect, and of very different appearance from the rest. "There are about twelve germens, placed in a circle, which have sharp summits." In our plant, the Sempervium tectorum, the leaves grow in thick tufts, and are very fleshy, and fringed at the edges with hair.

Look at this piece that grew upon the wall; it has only eight pistils.

In the Houseleek you will often find, that the
Sempervivum tectorum—Common Houseleek.

Class XI. DODECANDRIA = Order DODECAGYNIA.
number of all the parts of the flower, especially of the pistils, varies according to the richness of the soil in which the plant has grown; and it was for this reason that I wished to bring home specimens from different situations. The branch we have just examined, was from the thatched roof of the cottage, where I suppose the soil was richer than on the top of the wall.

Houseleek was formerly planted on the tops of houses, from a superstitious idea that it was a preservative from lightning and thunder.

EDWARD.

I am afraid that I should not have been able to find out the name of this plant, if you had not told me.

MOTHER.

It is unsatisfactory to examine the plants which are placed in this class, because the character itself is imperfect. You must always recollect, that every botanical arrangement, or System, as it is called, must be defective, because the acquaintance with plants, even of the best botanists, is very far from being complete. The method of Linnaeus is, upon the whole, one of the best; but it has some faults, and the imperfection of this eleventh class is one of them; for the class has no foundation in nature, and has been formed merely for convenience; whereas the grasses, and some other
tribes of plants that I have told you of, besides being so regular in the number and situation of the different parts, upon which the classes and orders are founded, have a general and natural character that distinguishes them.

The genus Rese'da, of which the Mignonette is a species, belongs also to the class Dodecandria; and Linnaeus himself says, that there is scarcely any genus which it is more difficult to determine; the number and shape of the parts of the flower varying considerably in different species. Two of these species grow wild in England, the Rese'da lu'tea, or wild Reseda, and the Lute'ola, Dyer's weed. The latter plant is made great use of in woollen manufactories for dyeing yellow; and it gives the colour also to the yellow paint called Dutch pink. It flowers in July; and Linnaeus observes that the spike of flowers follows the course of the sun,—turning towards the east at sunrise, towards the west as the sun declines, and at midnight towards the north.

The garden Mignonette, Rese'da odora'ta, which has its name from the delightful odour of the flower, is a native of Egypt; but was introduced into France about the year 1725, and thence into England in 1740. It blossoms from June till the beginning of winter, and the flowers when dried retain their scent for several months.

These three species of Rese'da are all annuals;
but the odora' ta, if the blossoms are cut off as fast as they blow, continues to bear flowers from year to year, like a perennial—You recollect what the words Annual and Perennial mean?

EDWARD.

An Annual is a plant that bears leaves and flowers within one year, and then dies.

MOTHER.

Very well. Several plants which are annual in warmer climates become Biennial, or live for two years with us: because the heat of this country is not sufficient to bring them to perfection in one year, and the seeds do not ripen till the second summer. Some that in warm countries are Perennial, which means lasting many years, become annual with us; the root being killed by our severe winters. And some that are perennial in cold climates become annual when they are transplanted to a warmer one, the heat and drought causing the roots to dry away.

But we must finish the eleventh class; that we may go on to the twelfth, which is very extensive, and contains several plants that you will be pleased to hear of.

The Chesnut-tree, Fa'gus casta'nea, which, according to Withering, is in the class Dodecandria*, and order Trigynia, is one of the finest of our

* In the class and order Monœcia Polyandria, of Linnaeus.
native trees, and is remarkably long-lived. In Gloucestershire there is a chesnut-tree which is known to have stood there ever since the year 1150, and was even then so remarkable, as to be called the great Chesnut of Tortworth: it measures fifty-two feet round, and still continues to bear fruit, though probably not less than a thousand years old. — But the largest chesnut trees known grow upon Mount Ætna in Sicily. The nut forms a great part of the food of the common people in the south of Europe, and the wood is very valuable. The tree is very beautiful, and Salvator Rosa, who painted a good deal in the mountains of Calabria, where the chesnut flourishes, very often represents it in his pictures.

The common Beech, Fa'gus sylvat'ica, is also a native of England. The old leaves, after turning brown, sometimes remain on the tree through the winter; and they are often gathered in the autumn by poor people, for the purpose of making mattresses, which are much better, and more durable, than those of straw or chaff. The wood soon decays when exposed to the weather: but it lasts a long time under water, and is of the greatest value for making carpenter's tools. The nuts, when dried and ground, are said to make a tolerable sort of bread, but they cause giddiness, if eaten raw: the poor people of Silesia use an oil procured from them instead of butter.
Now, my dear Edward, tell me, do you recollect how the twelfth class, Icosandria, is distinguished from the other?

Edward.
I believe there are more than twenty stamens in each flower; and if the petals are pulled off, the stamens remain on the receptacle.

Mother.
Bring your little drawing of the classes [Plate 2.], and see, yourself, whether you are right.

Edward.
Oh! I have made a great mistake! — It is in the thirteenth class, Polyandria, that the stamens grow upon the receptacle. In Icosandria they are fastened to the sides of the calyx.

Mother.
Here are two plants,—a Dog-rose and a Butter-cup; tell me to what class each of them belongs?

Edward.
I have pulled off the calyx of both flowers, and I think that the Rose is in the class Icosandria, and the Butter-cup in Polyandria; for all the stamens of the rose came off along with the calyx, but in the butter-cup they remain on the receptacle.
130 RO'SA CANI'NA EXAMINED.

MOTHER.

Exactly so. This character of the flower in the class Icosandria is very important; as it indicates, almost certainly, that the pulpy fruit, which comes after the flower, is wholesome. No traveller in an unknown wilderness need be afraid to eat the fruit of any plant whose stamens grow upon the calyx: but the other parts should be carefully avoided, for in some species they are poisonous.*

The plant that we shall examine to-day, is a Rose, which belongs to the genus Ro'sa, in the order Polygynia; and as there are several native species, I will at once tell you that this is the common Dog-rose, Ro'sa cani'na. [Plate 14.] "The "cup in this genus is of one leaf; with five divi-"sions in its border, which are narrow and sharp-"pointed. The blossom has five heart-shaped "petals, as long as the cup, and fixed to its neck." You recollect, that in this class, the precise num-ber of the stamens is not material; but there are more than twenty. The filaments are short, and fixed to the sides of the calyx. There is no seed-vessel; but the cup itself swells into a berry, which is generally of a bright red colour, when ripe, and contains a great many oblong seeds rough with stiff hairs. It is this cup which forms the principal distinction of the genus Ro'sa: its shape is some-

Rosa Canina Common Dog Rose.

Class XII. ICOSANDRIA Order POLYGYNIA.

Published July 1832, by Longman & Co.
thing like a boy's top, bulging out below and drawn in at the neck or upper part, as if confined by a string; and it opens at the top to let out the ripe seeds.

The *Rosa canina* is distinguished from the other Roses, by having oblong fruit; the stalks which bear the flowers smooth, but those supporting the leaves prickly: and crooked prickles also on the stem, two in every joint between the knots, placed alternately on opposite sides. In the calyx, two of the divisions have teeth on both edges; two have none; and the fifth has teeth on one edge only.

EDWARD.

How pretty the Dog-roses are! I often wish to bring some home; but the thorns are so sharp, that I can hardly pull them in the hedges.

MOTHER.

Roses are always accompanied by thorns, and these lines were written to reconcile us to them:

Why does the painful thorn presume
To spoil the Rose's soft perfume?
It was by Providence intended
Our pains and pleasures should be blended;
We smile to-day, to-morrow mourn,
Nor find a rose without a thorn.

The Sweet-briar, or Eglantine, is another species of rose, *Rosa rubiginosa*, which is common in England; its flowers sometimes grow double, and,
as well as the leaves, have a very delightful scent. The Provins, and Damask roses, provincia'lis and damascé'na, are the most fragrant of the genus Ro'sa. There are two varieties of the damasce'na which blossom more than once a year; one called the Monthly rose, the other the rose of Pæstum, which has been celebrated by Latin poets for blossoming twice a year. The Moss rose, Ro'sa musco'sa, has its name from the substance like moss, with which the flower-stems and calyx are covered; it is, in fact, a collection of glands, containing a resinous and fragrant fluid.

The Rose is a favourite plant in every country where it is found; but it is remarkable that no roses have ever been met with in the southern hemisphere. All the species at present known grow between the seventieth and twentieth degrees of northern latitude; except the Ro'sa Montezu'ma of Mexico, which is found in the nineteenth degree, at an elevation of nearly ten thousand feet above the level of the sea. Asia, which may be called the land of roses, produces about forty species; Europe has twenty-five species; of which five are common to Asia and Europe; and two species are peculiar to Africa. Among the ancients, particularly the Egyptians, roses were considered as symbols of silence; for which reason, the goddess Isis, and her son Harpocrates, who was the god of silence, were crowned with chaplets of these flowers.
Red and white roses are remarkable in English history as emblems of the houses of York and Lancaster; for when those two families were contending for the crown, in the reign of Henry the Sixth, the white rose distinguished the partisans of the house of York, and the red those of Lancaster.

There is another genus in this class, and of the same order, the Bramble, *Rubus*, that in some respects resembles the rose. Most of the species grow in cool climates or mountainous situations, and are valuable for their fruit, which is wholesome and agreeable. The berry is composed of a number of juicy grains, — in general attached to each other, so that they cannot be separated without tearing; and a number of these little grains are placed close together, round a receptacle like a sugar loaf; which you see when you pull a ripe raspberry.

The wild Raspberry, *Rubus Idaeus*, is plentiful in the North of England, Scotland, and Wales, and, though smaller than what is cultivated in gardens, which is a variety of the same species, the fruit has a much sweeter flavour. The fresh leaves are the favourite food of kids. The Blackberry, so common in all our hedges, is the *Rubus fruticosus*.

The Cloudberry, *Rubus Chamaemorus*, has its English name from growing on the tops of very
high mountains, which are often covered by clouds. It grows plentifully in the north of England and Scotland, and in many parts of the north of Europe. The Norwegians pack up the berries in wooden vessels, and send them to Stockholm, where they are sold for desserts, and for making vinegar; and the Laplanders bury them under the snow to preserve them from one year to another.

The dwarf crimson Bramble, Rubus arcticus, is so diminutive, that an entire tree, with all its branches, leaves, and fruit, has been put into a bottle capable of holding only six ounces.*

The Plum, Prunus; the Medlar, Mespilus; and the Pear and Apple trees, Pyrus, all belong to this class, and are all found wild in England.

The Cherry and Apricot, as well as the Plum, are species of the genus Prunus. And though the fruit in this genus is so good, the leaves of several of the species are poisonous; especially those of the Prunus Laurocerasus or Laurel Cherry. Many species of plum are covered with a substance called the Bloom, which is sprinkled over the outer surface of the fruit, and has very often a delicate tinge of blue: it is easily rubbed off with the finger, but resists the most violent rains.

The Prunus Armeniaca, or Apricot, has its specific name from having been originally a native

* Clarke's Travels, Vol. V.
of Armenia: it was first brought to this country about two hundred and fifty years ago.

The Sloe-tree, or Blackthorn, Pru'nis spino'sa, in its natural state, is almost covered with thorns: indeed most of our fruit-trees, in their wild state, are furnished with thorns; but cultivation soon causes these to disappear, or greatly diminishes their number. Thorns are, in fact, buds, which a sufficient supply of food would convert into branches and leaves, but whose growth is checked for want of nourishment. In temperate climates few vegetables are furnished with thorns; but in hot countries they render some of the forests quite impenetrable. In some species of Mim'osa, the thorns are so strong and thickly set, as to form a complete defence against animals, except such as have very thick and hard skins, like the rhinoceros, whose skin is said even to resist a musket-shot.

Several plants are furnished with Prickles, which are sometimes almost as stiff and sharp-pointed as thorns; but there is this difference, that the prickle springs from the outer bark, and may be peeled off along with it, while the thorn grows from the wood itself, and remains after the bark is taken away. What we commonly call thorns in the rose-bush, are only prickles. Grew remarks, that "thorns being part of the wood which has a ten-
"dency to grow upwards, generally point upwards;
“but prickles, which proceed from the bark only, "are in most cases pointed downwards.”*

All the varieties of pears and apples belong to two species only of Pyrus. The wood of the pear-tree, Pyrus communis, is light and smooth, and much used for making carved work; and when stained, it serves to make the black keys of pianofortes, and black picture-frames. The juice of the Pear, fermented, is called Perry; which is made in great quantities in England, especially in Worcestershire and Herefordshire.

The wild Apple, or Crab-tree, Pyrus Malus, though so harsh and disagreeable, is the original from which all our varieties of apples have been produced. The tree lives a long time; and the wood is much used by millwrights. The juice of the wild fruit, which is extremely sour, is called Verjuice, but that of the cultivated kinds, when fermented, makes Cider.

The Strawberry, Fragaria, is another valuable genus of this class, and grows wild in England.

EDWARD.

Are the large strawberries in our garden of the same genus as the little ones, that we find in the woods?

MOTHER.

They are; and even the species is the same,

* Grew’s Anatomy of Plants, p. 34.
Fragaria vesca; but the fruit is enlarged to the size that you see in the garden, by cultivation and richness of soil; which, you remember, render the growth of almost all plants more luxuriant. *

The Hawthorn, Crataegus Oxyacantha, which grows in almost every hedge, and the Mountain-ash, Sorbus aucuparia, that is so ornamental in shrubberies, are in the orders Digynia and Tri-gynia, of the class Icosandria.

Amongst the foreign genera of this class, the Clove-tree, the Myrtle, and the Peach and Almond-trees are remarkable.

The Clove-tree, Eugenia caryophylla, belongs to the order Monogynia, and is a native of the Molucca islands. Its general appearance resembles that of the laurel. The flowers, which are produced at the ends of the branches in great numbers, are first white, then green, and at last red and hard, in which state they are cloves. The season for gathering this spice is from October to February, when large cloths are spread under the trees to receive the flowers, which are beaten off the boughs with long reeds: as they dry they become yellow; and when gathered for some time, they are of a deep brown colour, such as we see.

The common Myrtle, the pretty evergreen shrub that is to be found in almost every green-house, is

* See page 85.
the species commu'nis of the genus Myr'tus; and is
a native of Asia, Africa, and the southern parts of
Europe. Lord Anson mentions, in his Voyage
round the World, that the largest trees for timber
on the island of Juan Fernandez, and from which
he obtained beams of forty feet in length, were of
this genus.

The Peach-tree, Amyg'dalus Per'sica, of which
there are two varieties,—the Peach with downy
fruit, and the Nectarine without down,—is in the
first order of this class. Its native country is not
known, but it is supposed to have come originally
from Persia. Another species, the Almond-tree,
Amyg'dalus commu'nis, is a native of Barbary.

In the same order of this class are the Pomegra-
nate-tree, Pu'nica Grana'tum, which bears the fruit
supposed to have been the golden apple of the an-
cients;—and the Eucalyp'tus, a genus peculiar to
Australia, of which nearly a hundred species have
been already discovered, most of them trees of very
large dimensions. The Eucalyp'tus glob'u'lus, and
another species peculiar to the south end of Van
Diemen's Island, frequently attain the height of a
hundred and fifty feet, and measure, near the base,
from twenty to five-and-forty feet round.
CONVERSATION THE TWELFTH.

EDWARD.
I have brought in some beautiful Poppies from the corn-fields; and I am sure they are in the thirteenth class, Polyandria, for all the stamens are fixed to the receptacles, and there are more than twenty of them. Will you read the description of the poppy for me?

MOTHER.
I will, my dear, with pleasure. It gives me great satisfaction to find that you begin to distinguish the classes by yourself. But we must go on regularly:—is there nothing else to be determined before we come to the genus?
Oh, yes;—the order. Well, there is only one pistil, so it is Monogynia.

Very well. The genera of this order are, for convenience, divided into three sets, consisting of plants, which have flowers with four petals, or with five, or with a greater number. This plant has but four; and in that division there are only three genera, to one of which, of course, the poppy belongs.

The seed-vessel of the first genus, Chelidonium, is a long pod, something like that of the wall-flower. [Plate 1.] Is that the case in your plant?—Look at the largest of the seed-vessels, [Plate 15.] and tell me.

No, mamma; this has a round smooth seed-vessel, with a little thing like a coach-wheel on the top.

Then it is not Chelidonium.—In the next genus with four petals, Actea, the seed-vessel is a berry, consisting of a pulpy substance, with the seeds dispersed through it,—like a currant or gooseberry, but quite unlike this one. Our plant, then, must be a Papaver; and we will now see whether your
Papaver Rhoeas — Common Red Poppy.

Class XIII. POLYANDRIA — Order MONOGYNIA.
flower agrees with the full description of that genus. [Plate 14.]

"The cup consists of two egg-shaped leaves."—

Edward.

But these flowers have no cup.

Mother.

You must look at some of those which are not fully blown, for in this genus, the calyx falls off as soon as the blossom opens. When this is the case, the calyx is said to be Cadu'cous; if it falls off along with the other parts of the flower, it is called Decid'uous, as in the Wall-flower; when it remains after the other parts of the blossom fall, it is said to be Permanent, as in the Corn-cockle.

"The cup consists of two egg-shaped leaves, notched at the ends. The blossom is composed of four round flat petals, large and spreading out, and narrowest at the end next to the receptacle. The filaments are numerous, like hair, and much shorter than the blossom; and the anthers are oblong and flattened. In the pistil, the germen is large, and in general, nearly round, like a globe;"—but in some of the species it is oblong, as in this instance; "there is no style; and the summit is shaped like a target, or something like a saucer turned upside down, flat, and divided into rays like the spokes of a wheel. The seed-
"vessel is called a Capsule, and has only one cell,
divided half-way through by little partitions that
run from top to bottom. The large flat summit
forms a sort of crown upon the top of the seed-
vessel, which, when the seeds are ripe, opens in
several places close under the crown, to let them
out. The seeds are round and numerous."

EDWARD.

What is a Cell?

MOTHER.

It is a hollow space in the seed-vessel, for holding the seeds. A capsule is composed either of one such hollow, or of several; and these cells are sometimes provided with little partitions, to which the seeds are fixed, until they are quite ripe and fit for sowing. Can you find the seeds of your poppy?

EDWARD.

Yes; but they are very small. Would every one of these little things grow into a plant, if I were to put them into the ground?

MOTHER:

It is probable that a good many of them would be destroyed by damp, or eaten by insects; which is, perhaps, one of the reasons why they are so numerous.
The number of seeds produced by some annuals is very astonishing. More than thirty thousand have been found in a single head of poppy; and in some other plants the number is still greater. In the great Cat's Tail, Typha major, the seeds are blown off by the wind, and no doubt many of them lost; but this effect is provided against by their vast number, each spike generally bearing about forty thousand seeds! so that upon the three spikes, which every plant commonly produces, there are every year more than a hundred and twenty thousand seeds. The Tobacco, Nicotiana Tabacum, of a genus in the class Pentandria, has been known to produce, on one plant, three hundred and sixty thousand seeds; and the annual produce of a single stalk of Spleenwort, a kind of Fern, has been estimated at a million.

Edward.

And do all plants produce seeds?

Mother.

All annual and most perennial plants do so, when they grow in a favourable soil and situation.

The structure of seeds, and the manner in which they grow, or germinate, are of great importance in botany; — because they are found to be always connected with very great differences, both in the inward structure, and in the form and ap-
pearance of the plants which spring from the seed. But as this subject is difficult, I will mention to you only some of the principal parts into which seeds are divided,—and these are, chiefly, the Skin or Husk, the Cotyl'edon, and the Embryo.

The Skin, or Husk, is only a sort of case, by which the parts within are defended from injury; it is commonly of a darker colour than the parts which it contains.

The Lobes, or Cotyl'edons, immediately surround the Embryo: and when the stem has begun to grow, they generally appear upon the surface along with it, in the form of the first leaf or leaves: when there is only one lobe, the plant is said to be Monocotyle'donous; when more than two, it is called Dicotyle'donous, which is by far the most numerous division: other seeds have a greater number of Cotyl'edons than two; and some have none at all.

The Embryo is the future plant in miniature, and in general is exceedingly small.—Linnæus calls it the Cor'culum, or little heart. It is the part which all the rest of the seed is intended to nourish and protect, and is itself divided into two parts; one called the Plu'mula, which always grows upwards, and becomes the stem and branches of the future plant; the other, which is called the Rad'icle, becomes the root, and grows down into the earth. These parts may be readily distinguished in the
common garden bean, the skin or husk of which it is very easy to separate: the two flat portions, which form the greater part of the bean, being the Cotyl'edons, with the little plant or Cor'culum between them.

EDWARD.

Must the seeds be quite ripe, before they can grow?

MOTHER.

Seeds that are not ripe, very seldom grow; but there are a few exceptions to this rule. Peas have been known to germinate, even when put into the earth in a green and soft state; and the seed of a lemon has been observed to shoot out a little radicle and plumula, even before it was taken from the fruit.

Some kinds of seeds take a much longer time to germinate than others. Those of the grasses are among the number whose seeds grow the quickest; and the plants of the Rose-tribe are perhaps the slowest.

EDWARD.

But when the seeds are not gathered when they are ripe, what becomes of them?

MOTHER.

Nature takes various methods to ensure their being sown. The seeds of several plants, which grow best in a peculiar soil, as of the A'rum,
are small, and heavy enough to fall directly into the ground when the seed-vessel opens; so that they grow without further care, in the same place where the parent plant flourished. If the seeds are so large and light, as to be borne by the wind, they are often furnished with little hooks, to prevent their straying too far till they are safely lodged in the earth. Some, on the contrary, have little wings, that when they are ripe, they may be carried by the wind to some distance, lest they should all fall together, and come up so thick as to injure each other. The ash and maple are furnished with seeds of this description. Other seeds are scattered, not by flying about, but by being spurted or darted away by the plant itself; those of the Wood-sorrel, for instance, which has a running root, are thrown off in this manner; the seed-vessel being of such a construction, that when it begins to dry, it bursts open, and in a moment is violently turned inside out, so that the seeds are scattered to a great distance. When oats are ripe, they are thrown from the calyx with such a sound, that, in passing near a field of oats in a fine dry day, you may hear a crackling noise.

Birds and animals also sometimes disperse the seed, when the seed-vessel forms part of their food. This is the case with such fruits as the cherry, the sloe, and haw; which birds carry away, till they
find some convenient place for devouring the pulpy seed-vessel, and then drop the stone, which contains the seed, upon the ground.

Where the seed is liable to be totally destroyed, provision is made for the propagation of the plant by other contrivances. Thus in the strawberry, the seeds of which are eaten along with the pulp, and often devoured by vermin, the plant is easily made to grow from suckers, or young shoots; much in the same manner as the stoloniferous grasses which I described to you the other day.

EDWARD.

Shall we try now to find out what species of Poppy this is?

MOTHER.

There are six or seven native species of Papaver; two of which, du'bium and Rhoe'as, resemble each other in their general appearance, and are both very common. As yours is one of these, I will read the characters of both, and you shall decide for yourself.

In the species du'bium, "the capsules are smooth and oblong, that is, of an oval shape, or somewhat like an egg; the stem bears several flowers; and the stalks are covered with a bristly sort of hair, which lies close down upon them."
In the other species, "the capsules are smooth, " and shaped like an urn, broader at the top than " at the bottom; the stem bears several flowers, " and is hairy; and the hair on the fruit-stalks, " instead of lying close down, spreads or stands " out."

EDWARD.

I did not know that poppies had any fruit; but you speak of their fruit-stalks. What are they?

MOTHER.

In all plants, the part that contains the seeds is called the fruit, whether it is fit to be eaten or not; and the fruit-stalks are those which support this part. Now, can you tell me, which of the descriptions that I have just read suits your poppy?

EDWARD.

The last, I think: because the seed-vessel is broader at the top than at the bottom, and the hairs stand out from the fruit-stalks.

MOTHER.

Very right: our plant is of the last species that I have mentioned, Papa'ver Rhoe'as, common red Poppy; one of the most troublesome weeds the farmer meets with among his corn, for it is more difficult to destroy than any other. The seeds will lie for a very long time without shooting in un-
ploughed land; but as soon as the corn begins to grow, they spring up.

When the Poppy is only in bud, the stem is curved, and the head hangs down, so as to prevent the rain and dew from getting into it; but when the flower has become larger, and is ready to open, the stalk stands up, as if for the purpose of presenting the flower to the sun's rays.

Opium, which is so much used in medicine, on account of its power to relieve pain, and to occasion sleep, is the juice obtained from the unripe seed-vessels of another species of Papa'ver, the somnif'erum, or white Poppy. In many parts of Asia Minor the inhabitants chew opium, as the sailors and common people chew tobacco in England; and whole fields are sown with the seeds of this plant, just as ours are with corn. When the heads are nearly ripe, they are cut into on one side with a sharp instrument, and a white liquor flows out, which the heat of the sun hardens upon them; this is the Opium; it is collected the next day, when fresh cuts are made on the opposite side of the seed-vessel; but what comes from the first wound is greatly superior to that obtained from the second. After the opium is collected, it is moistened with a small quantity of water or honey, and worked upon a board until it becomes of the consistence of pitch, when it is formed into cakes or rolls for sale. Tincture of opium, which
TEA.

is made by dissolving it in spirit of wine, is called Laudanum.

There is another plant, called yellow Horned Poppy, Chelido'nium Glau'cium, which is in the same order of this class, but of a different genus. It is found in many parts of England near the sea; and has its English name from the great length of the pods, which may be compared to horns. It is a very poisonous plant, which is the case with most of those belonging to the class Polyandria.

EDWARD.

Then are there no fruits in this class fit to eat?

MOTHER.

There are a few; but none of them are natives of this country. But there is one tree belonging to it which is very remarkable, and is considered as almost a necessary of life in several other parts of the world, as well as in England, though it does not produce an eatable fruit. The Tea-tree, The'a, is a native of China, Japan, and Tonquin, and has never been found wild in any other country. It attains the height of ten or twelve feet, and is an evergreen. The leaves, which are the only valuable part, are about an inch and a half long, and resemble those of sweetbriar; the flowers are something like the wild white rose; and the seeds are round, blackish, and about the size of a large pea.
Linnaeus says, that there are two species of this plant, the Bohe‘a, or black, and the Vir‘idis, or green tea. The green, which has much longer leaves than the black, is a more hardy plant, and, with very little protection, bears the severity of our winters.

As tea is a most important article of commerce to the Chinese, they bestow the greatest possible care upon its cultivation. It is propagated by seeds, from six to twelve of which are put into holes at regular distances from each other, and about five inches deep; so many of the seeds being sown together, because it is supposed that only a small number grow.

When the tree is three years old, the leaves are fit to be gathered; and the men who collect them wear gloves, that the flavour may not be injured. They do not pull them by handfuls, but pick them off one by one, taking great care not to break any: and although this appears to be a very tedious process, each person gathers from ten to fifteen pounds a day.

The fresh leaves are first exposed to the steam of boiling water, after which they are put on plates of copper, and held over a fire until they become dry and shrivelled; they are then taken off the plates with shovels, and spread upon mats, — some of the labourers taking a small quantity at a time, which they roll in their hands, always in the same
direction; while others are continually employed in stirring the tea-leaves on the mats, that they may cool the sooner, and retain their shrivelled appearance; and this process is repeated several times before the tea is fit for use.

The tea-leaves are gathered at three different seasons. What are first procured, while they are very young, are called Imperial tea, and generally reserved for the court and persons of rank, because it is considered as of the finest quality. The last gathering, when the leaves have attained their full growth, is the coarsest tea of all, and is used by the common people.

In China and Japan, tea is sold in every town, and on all the public roads, as beer is in England; and is drunk in the same manner by labourers and travellers: it is used without cream or sugar; and in Chinese drawings, the people are seldom represented at work of any kind without a tea-pot and tea-cup. People of rank in those countries take as much pains to procure tea of excellent quality as Europeans do to obtain good wine; and they generally keep it a year before it is made use of.

The Tea-tree is said to grow in China, principally in a mild and temperate climate, in the country about Nankin; in Japan, that which is most esteemed grows in the neighbourhood of a small town called Udis; where there is a celebrated mountain of that name, near the sea, the whole of
which is planted with tea for the Emperor's use; and surrounded with a wide ditch for its protection.

Tea was first brought to Europe from China, by some Dutch merchants, about the year 1641.

The Caper-bush, Cap'paris spino'sa, Polyandria Monogynia, grows wild in the Levant. It is as common there as the bramble is with us, growing out of old walls, the chinks of rocks, and amongst rubbish; and is cultivated in the south of Europe, for the sake of the young flower-buds, which are pickled and exported in considerable quantities, and are used at table in England. It is a very beautiful shrub.

But I must return to our native plants, some of which, of this class, are too remarkable to be passed over; particularly the Water-lily, which is equal in beauty to almost any foreign flower.

EDWARD.

I have seen a white Water-lily growing in our ponds. What is its botanical name?

MOTHER.

Nymphæ'a al'ba, of a genus in the order Mono-gynia. You must watch it in the evening, when the flowers close and lie down upon the water: at night they sink below the surface; and in the middle of the day, when the weather is bright and hot, they rise some inches above it, and expand.
The yellow Water-lily, Nymphae'a lu'tea, is also a very beautiful flower, though much smaller; it grows in the same situations as the white, in ponds and slow-running rivers.

Nymphae'a Nelum'bo, the Sacred Bean of India, is celebrated by the Chinese poets. The flowers, which resemble tulips, are composed of numerous petals, tinged with a delicate pink; and they are very splendid. The seed is like a small acorn without its cup; it is eaten green, and often preserved as a sweet-meat; and the root also is used as food.

The Egyptian Lotus, or Lily of the Nile, is another species, the Nymphae'a Lo'tus.

The common Lime or Linden-tree, Til'ia eu-ropæ'a, Polyandria Monogynia, is a native of England. The wood is preferred by carvers to every other, on account of its delicate colour, and of its not being liable to split or to be injured by worms. The beautiful festoons of fruit and flowers at Windsor Castle, and some of the ornaments of the choir of St. Paul's church in London, which were carved by Gibbons in the time of Charles the Second, are of this wood, and are still in perfect preservation. The leaves of the Lime-tree are dried as winter-food for sheep and goats; and the bark is sometimes made into ropes and fishing-nets. Sugar is prepared in some countries from the sap; and the flowers, which are delightfully
fragrant, particularly at night, are eagerly sought after by bees.

Some of the most common garden flowers belong to native genera in the orders Pentagynia and Polygynia of this class: Larkspur, Delphinium consolida; Monkshood or Wolfsbane, Aconitum Napellus; Columbine, Aquilegia vulgaris; Traveller's Joy, Clematis Vitalba; and Piony, Paeonia corallina, which last grows wild on some of the islands in the Severn, are among the number.

There is a tree also, in the order Polygynia of this class, a native of North America, which bears a flower very much resembling our garden tulip, and is therefore called the Tulip-tree, Liriodendron Tulipifera. It grows to the height of seventy or eighty feet, and its wood is used for all sorts of carpenter's work. The flowers, which have six petals, spotted with green, red, white, and yellow, are succeeded by large cones, or seed-vessels, but these never ripen in England.

The Sarracenia, Side-saddle Flower, is of singular structure, both in the flower and the leaves; the plant is very common in the swamps in North America, but it is extremely difficult to cultivate in this country. The singularity of the flower consists chiefly in the stigma, which is spread out over the stamens like an umbrella. The leaves are hollow tubes, capable of holding water; and it is
said that, in dry weather, birds and other animals repair to them for drink.

I forgot to mention to you, when we were speaking of the first order of this class, that the dye, called Anotta, is obtained from the berries of a tree belonging to it, called Bix’a Orella’na, a native of the East and West Indies. The Mexicans employ the anotta, which affords a bright orange colour, in staining wood and in drawing; and it is used in England to give a deep colour to cheese. The bark makes good ropes for common purposes; and the wood is much used by the American Indians for procuring fire, which they do by rubbing pieces of it together.

EDWARD.

You promised once to tell me a story of a poor Indian woman, who suffered a great deal because she did not know this way of making a fire.

MOTHER.

I did so; and as we have finished our thirteenth class you shall hear it now, though it has no immediate relation to Botany, because it shows the value of knowledge and ingenuity in time of distress. I read the account in Hearne’s Journey to the Northern Ocean.

When some of Hearne’s companions were hunt-
ing in one of the wildest parts of North America, they observed the track of a strange snow-shoe.—

EDWARD.

Is that different from a common shoe?

MOTHER.

It is made of an oblong wooden rim, with cords woven like a net, from side to side, something like the rackets with which you play, but much longer and wider than the foot; it is fastened to the sole of the foot, and is used to prevent the person who wears it from sinking in the soft snow.

The party followed the track, and came at last to a little hut, where they discovered a young woman sitting alone. They soon found that she understood their language, and was one of a western tribe of Indians, who, with some others, had been taken prisoners by another tribe. The savages, according to their custom, surprised her party in the night: and her father, mother, husband, and even her young child who was only five months old, were put to death. This act of cruelty gave her such an abhorrence to those Indians, although she herself was treated with great kindness, that she resolved to leave them, if possible, and to return to her own country, at the hazard of the greatest misery and danger: — and
she succeeded in escaping; but the windings of the rivers and lakes were so numerous, that she lost her way, and was obliged, with her own hands, to build the hut in which she was found, to give her shelter during the winter.

From her account of the number of moons that had passed since her escape, for that was her way of reckoning time, it appeared that she had been near seven months without seeing a human face; but during all that time she had supported herself very well, by snaring partridges, rabbits, and squirrels.

The methods practised by this poor creature to procure a subsistence were truly admirable. Five or six inches of an iron hoop, made into a sort of knife, and the iron head of an arrow, which served her as an awl, were the only tools she had; but with these she had contrived to make herself complete snow-shoes, and many other useful articles. When the few deers' sinews that she had taken with her were all used, in making snares for game, and sewing her clothes, she had nothing to supply their place but the sinews of the rabbits' legs and feet: but she twisted these together with great dexterity into threads; and the wild animals that she caught not only supplied her with food, but with a suit of warm clothing for the winter, which she had made of their skins.
It would scarcely be imagined, that a person in her forlorn situation could be so composed as to contrive or execute any thing that was not absolutely necessary to existence; but all her clothes, besides being calculated for real service, showed great taste, and even variety of ornament.

Her hours of leisure from hunting had been employed in twisting the inner bark or rind of willows into small lines like twine, of which she had prepared several hundred yards; and of this she intended, as the spring advanced, to have made a fishing net, after the manner of her country.

One of her greatest difficulties was to make a fire; for she had no other instruments for that purpose than two hard stones: but by rubbing or striking these together, after a great many attempts, she obtained a few sparks, and at last succeeded inkindling some touchwood.

EDWARD.

Is that the wood of the anotta tree?

MOTHER.

No: touchwood is not the produce of any particular tree; but dried decayed wood, of almost any kind, which is used in England to catch the sparks struck from steel or iron by a flint.—When I rub this metal button very quickly on the cover
of the table, you perceive that it becomes hot; and if I could rub it hard enough, it might even be made to set fire to the cloth. The same effect is actually produced when a piece of steel is struck against a flint; for the scraping or rubbing causes so great a heat as to set fire to the little morsel of steel which is struck off by the violent blow.—I suppose the poor woman knew that sparks could be struck out from two hard stones; and that she found, by good fortune, some pieces of decayed wood, fit to be set on fire by them; but as this method was very laborious and uncertain, she thought it best to keep her fire burning, with great anxiety, through the whole winter.
CONVERSATION THE THIRTEENTH.

CLASS 14. DIDYNA’MIA. — NATURAL ORDERS. — GLE-CHO’MA HEDERA’CEA, GROUND IVY, EXAMINED. — LEAVES.—OTHER PLANTS OF THIS CLASS.—HONEY FLOWER.—FOREIGN TREES.—SITUATION AND DISTRIBUTION OF PLANTS.—EFFECTS OF CLIMATE, — AND OF LIGHT.

MOTHER.

I HAVE already told you, Edward, that the flowers of the fourteenth class, Didynamia, contain four stamens, two of which are long and two short. But, besides these distinctions, this class is known by some others, which it is important to attend to, because they form what is called a Natural character.

EDWARD.

What does that mean?

MOTHER.

Some plants, although belonging to different genera, bear so strong a resemblance to each other,
in their whole structure, and appearance, that botanists are enabled to arrange them into sets or groups, which they call Natural Orders: and the circumstances that distinguish these, are called the Natural character; because they form distinctions which are pointed out by nature itself. Whereas the classes and orders which depend upon the number of the stamens and pistils, though they afford a very convenient method of finding out the names of plants, sometimes separate plants that are in reality very like each other.—The umbelliferous plants, for example, have a very obvious natural character. The lilies, of which the orange and white lilies and the Crown Imperial in the garden are good examples, form a very distinct natural family; and may easily be known from other tribes, by their bulbous roots, long slender leaves, and handsome flowers, and by having either no calyx, or instead of one a sheath.

Edward.

But the hyacinth and tulip are very like what you describe, as well as the lilies.

Mother.

So they are; and from this general resemblance, they are placed in the same natural order, and the whole together are called Lilia'ceous plants.

The grasses form another natural tribe, which
includes all plants that have a straight hollow stem, without branches, and commonly jointed; a single undivided leaf, part of which surrounds the stem like a sheath, growing from each joint, and each flower bearing but one seed. [See Plates 4. and 6.] Plants which have these characters, whatever be the class in which they have been placed according to the method of Linnaeus, belong to the natural order of grasses, called in Latin Gram'ina. The different species of rush, and the rice plant, for instance, are placed in the sixth class of Linnaeus, because they have six stamens, but they belong to this natural order, as well as the various kinds of corn and the sugar-cane, which have only three. This separation of genera that are so much alike, is one of the principal defects of the Linnæan system.

EDWARD.

But is there no arrangement better than Linnaeus's?

MOTHER.

Several different systems or arrangements of plants have been invented by other botanists; which are founded, some upon the fruit, some upon the corolla, and others upon the general appearance, or natural character, of the whole plant, without regard to the number of stamens and pistils. There is not any one quite free from objections; but the ingenuity
of some of them will interest and delight you very much, when you are sufficiently acquainted with the structure of plants to understand them.

My reasons for having chosen the system of Linnaeus, in preference to any other, were, that it will enable you to find out the genera and species of plants with greater ease and certainty than any other, which is all that I propose to instruct you in at present; and that it is almost universally used in England. The Natural orders, in short, serve best to teach the structure of plants; and Artificial orders, to distinguish one plant from another, or to find their places in the arrangement. Linnaeus himself, indeed, allows, in his Genera Plantarum, that his artificial method is of use only to ascertain plants.

EDWARD.

But have not a great many plants been found since Linnaeus's time?

MOTHER.

Botanists are constantly discovering new species; and travellers seldom visit distant countries, without bringing home even new genera. Sir Joseph Banks found nearly a thousand species, during the voyage in which New South Wales was discovered; and Mr. Brown, a celebrated botanist, who went out with Captain Flinders, on a voyage of discovery to New Holland, in the year 1801,
Glechôma hederàcea *Ground Ivy.*

Class XIV. *DIDYAMIA*_—Order *GYMNOSTERMIA._
collected nearly four thousand different species, most of them new.

The whole number of plants, at present known, may be estimated at thirty-three thousand; without including those peculiar to New Holland. Those belonging to the class Cryptogamia, already published by various authors, exceed six thousand. But we must come back to the class Didynamia; and we shall now examine the common Ground-Ivy, which is a good example of it. [Plate 16.]

There are two orders in this class, the first called Gymnosper'mia, in which the seeds are naked: the second, Angiosper'mia, having the seeds covered. Pull out one of the blossoms and tell me to which of these orders the Ground-Ivy belongs.

EDWARD.

I suppose it must be the first; for I see four little seeds in the bottom of the cup, without any covering. But what were the two little white crosses that I saw in the blossom?

MOTHER.

They were the anthers; but you must not be too sure of their number, until you have opened the blossom; you will then find, that what you took for a cross, is in reality composed of two parts, so shaped, that when they meet, ℄ ℍ ℍ they look like a little cross. This is what constitutes the prin-
principal distinction of the genus Glecho'ma, to which our plant belongs; and we shall now try, whether the remaining characters correspond with the description.

"The cup is small, in proportion to the size of the blossom, and formed of one leaf, in five unequal divisions, each of which ends in a point. The upper lip of the blossom is upright, and and slightly notched in the middle; the lower lip is large, turns down, and has three divisions, the middle one the broadest, and notched at the end. The style is thread-shaped, and the summit cloven into two pointed divisions. There is no seed-vessel; but the seeds are placed at the bottom of the cup, without any covering;" — as you have seen. All this agrees so well with our specimen, that there can be no doubt about the genus.

There is but one native species of Glecho'ma, the hedera'cea; and it may be distinguished from the foreign species by the leaves, which, you perceive, are nearly kidney-shaped, and scolloped at the edges. When rubbed on the under side, they have a pleasant smell; the upper side has none. The leaves and young shoots of this plant were used in England for giving a flavour to ale, till the reign of Henry the Eighth, about which period hops were substituted.

The figure of the leaf has been found to be of great use for distinguishing the species; and bo-
tanists have therefore spared no pains to determine and describe the various forms of leaves, of which there are upwards of a hundred. The size also of the leaf varies much in different plants; but the largest plants have not always the largest leaves: those of the Marsh Marigold, Cal’tha palus’tris, a small herb, are larger than those of the oak. The largest leaves produced by any British species, are, I believe, those of the Burdock, Arc’tium Lap’pa, and the Butterbur-Coltsfoot, Tussilá’go Petasi’tes; but these are very small, in comparison with the leaves of some foreign countries. The leaf of the Strelit’zia Regi’na, an African plant, grows to the length of three or four feet, and is eighteen inches at the broadest part. Those of the plaintain tree have been known to attain the length of ten feet, with the breadth of two feet at the base; and they are used in a variety of ways, to screen the inhab- bitants from the rays of the sun. The largest leaves are found in tropical climates, where shade is most wanted.

Leaves are of great service to the plants upon which they grow, by affording protection to the flower and fruit; and such tender fruits as require to be shaded from the sun-beams while young, are accompanied by very large leaves; while in the pear and apple, and other trees where the fruit does not need protection, the leaves are compara- tively small.
EDWARD.

But if the leaves are so useful, why do not the trees die when they fall off?

MOTHER.

When vegetation ceases,—that is, when the plants do not continue to grow, as is the case with many of them in this country during the winter,—the leaves become unnecessary, and then fall off or decay; but when warm weather approaches, new ones appear, and the plant begins to grow again. The under side of the leaf is furnished with a great number of little vessels, or tubes, which seem to be intended to imbibe the moisture of the air. M. Bonnet, indeed, proved this by a very simple experiment: he placed a leaf of the white mulberry, Mo'rus al'ba, with its upper surface upon water, and found that it did not continue fresh and green for more than six days; but another leaf of the same tree, placed with its under surface upon water, continued fresh for six months. The upper surface of the leaf serves as a defence to the under side: and this position of the two surfaces appears to be essential to the health of the plant; for if a branch be turned upside down, in such a manner as to reverse the natural situation of the leaves, they will turn back again of themselves.

But we must not forget the fourteenth class, where we left off.—You can now, probably, under-
PLANTS OF THE CLASS DIDYNA'MIA. 169

stand its natural character; which consists in its having a calyx formed of only one leaf, like a tube,—with five divisions,—and being permanent, or remaining upon the stalk until the seeds are ripe. The blossom, too, is of one petal, the lower part like a tube; and the border is divided into two parts like lips; from which last circumstance the flowers belonging to the class are called La'biate, or Lipped, and some of them, from their resemblance to an open mouth, are said to gape or grin. In most instances the upper lip is like a hood or helmet, and the lower one spreads out, and is divided into three segments.

The plants of the order Gymnospermia, or naked seeds, are almost universally odoriferous, and none of them are poisonous. Lavender, La-van'dula Spi'ca; several species of Mint, Men'tha; the common Marjoram, Orig'anum vulga're; Balm, Melis'sa; white Horehound, Marru'bium vulga're, and Vervain, Verbe'na officinalis, are among them:—and these are all natives of England, except the lavender, which came originally from the south of Europe.

In the second order, Angiosper'mia, where the seeds are enclosed, some of the species are poisonous; and the common Fox-glove, Digita'lis pur'pu'rea, which grows plentifully in England, though very useful in medicine, is one of these:—indeed every medicine would be poisonous, if taken in suf-
ficient quantity.—The Honey-flower, Melian’thus, a Cape plant, is of this class and order. It pro-
duces honey in such great abundance, that a tea-
spoonful may be collected every morning from each
of its flowers, of which there is always a great
number: but the strong and disagreeable smell of
the plant when it is bruised indicates a poisonous
quality.—There is another flower, but of the class
Hexandria, the Crown Imperial, Fritilla’ria impe-
ria’lis, which produces nearly as much honey; but
the plant is so poisonous that bees will not collect
it: this beautiful plant, now so common, was intro-
duced into Europe by Clusius, a professor of bo-
tany at Leyden, who received it from the East, along with the Horse Chesnut, more than two hun-
dred years ago.

Snapdragon, Antirrh’num, and Vervain, Ver-
be’na, are other examples of the order Angio-
spermia, of the fourteenth class.

EDWARD.

Verbe’na is the plant in the greenhouse that has
such sweet-scented leaves; they have a smell of
lemon, even when they are dry.

MOTHER.

There are several species of Verbe’na, and the
one you mean is the tryphil’la, or three-leaved
Vervain. It is a native of Chili in South America.
The leaves of several plants retain their aromatic smell for a long time, even when dried. Those of a great many Geraniums are very fragrant, and you are well-acquainted with the odour of the leaves of Mint, Thyme, Rosemary, Lavender, and several other plants, commonly cultivated in gardens.

There are but few trees in the class Didynamia, and none of them are natives of this country. The Calabash tree, Crescentia, is in the order Angiospermae, and there are two species, the oval and the round-fruiting, Crescentia Cumpte, and Crescentia cucurbitina. Both are natives of the West Indies, and they are easily propagated by seed. The wood of the Calabash tree is hard and smooth, and is used for making different kinds of furniture. The fruit varies from two inches to a foot in diameter; but the pulp is seldom eaten, except by cattle in time of drought. The small shells, of the long-fruiting species, are formed into spoons and ladles, and those of the round fruit into cups. The large shells, which sometimes hold fifteen pints, serve for boiling water in, and bear the fire very well.

EDWARD.

I think you have told me of very few trees that are natives of England, in comparison with other countries.

MOTHER.

When you consider how very small a part of the
world England occupies, you cannot be surprised that the native trees are comparatively few in number: and I ought to have mentioned to you before, that the proportion of trees to herbaceous plants, is much greater in hot countries than in temperate and cold climates. But it is singular, that in some parts of North America, though the average climate is colder than that of England, the vegetation is richer. In the United States alone, it is supposed that more species are found, of the single genus Quercus, or oak, than there are, of different genera, in the whole of Europe.

Trees grow in such profusion in many parts of North America, that great pains are taken to destroy them. The ground cannot be tilled, nor can the inhabitants support themselves, until the trees are removed; and the person who cuts down the largest number, and makes the fields about his house most free from wood, is looked upon as making the greatest improvements in the country. I have heard, that when some Americans landed on a part of the north-west coast of Ireland, which we should consider as very desolate and dreary, they expressed the greatest surprise and pleasure at the beauty and improved state of a country, "so clear of trees."

EDWARD.

What curious things you tell me! I thought, at first, that botany would teach me only the names and shape of plants.
You will find, as you advance, that what relates to the various situations in which vegetables grow, and their distribution in different countries, is very interesting. Some species, for instance, are confined to exceedingly narrow limits, while others are diffused almost universally over the world. A species of marjoram, Orig'anum Tournefor'tii, a plant of the class Didynamia, was discovered by Tournefort, a celebrated French botanist, in the year 1700, upon one rock only in the little island of Amorgos, in the Archipelago. It was found eighty years afterwards, by Sibthorpe, another botanist, on the same island, and even upon the very same rock; but no one has ever yet observed it any where else.

Some plants grow wild on mountains only, and are called Alpine, from the word Alps, which signifies a very high mountainous district: some grow in valleys only, others no where but on plains; and some are entirely confined to water, and therefore called Aquatic. Some require the hottest climates, some temperate ones, while others thrive only in the midst of ice. Asiatic plants are remarkable for their beauty; those of Africa for their thick and succulent leaves: and of America for the length and smoothness of their leaves, and a sort of peculiarity in the shape of the flower and fruit. The flowers of Europe are seldom very beautiful.
The plants peculiar to the polar regions are generally low, with small compressed leaves, and flowers large in proportion: those of New Holland are distinguished by small and dry leaves, which often have a shrivelled appearance. In Arabia, the plants in general are low and dwarfish; in the Mediterranean and Archipelago, they are generally shrubby, and furnished with prickles: while, in the Canary Islands, many which in other countries are merely herbs, assume the appearance of shrubs and trees. Nature, however, has endowed some tribes with the capacity of growing in almost all climates; and this is fortunately the case with the grasses, and with many eatable roots, such as carrots, turnips, potatoes,—so that these have followed man into all the climates and quarters of the globe. Between the tropics, where the degree of heat is always high, it often happens, that plants flower more than once in the year.

Light, also, as well as heat, has a great effect upon the colour and growth of plants; so that, when they are deprived of it, they become white and colourless, and shoots up into pale weak stalks. The outer leaves of a cabbage are green, but the heart, or inner part, is nearly white, merely from being shut up. Potatoes often grow in cellars, where there is but little light and air; and the stems shoot to a great length towards the light,
but they are very weak, and trail upon the ground. I have myself seen plants, which had grown in dark rooms or cellars, and were perfectly white, gradually become green on being exposed to the light.

EDWARD.

Then does the gardener cover up endive and celery with earth, to make them grow white?

MOTHER.

He does, my dear; and earthing them up in this manner is called blanching. The position of the leaves of plants depends in some measure on their exposure to light, to which they always turn their upper surface: and it has been remarked, that the ripe ears of corn, which bend down with the weight of the grain, scarcely ever incline to the north, but always turn towards the sun, or to the south; you may observe this yourself in a field of ripe corn. The opening of flowers is also effected by light; many of them do not expand their petals fully, except when the sun shines,—and hence open them during the day, and shut them at night, alternately. There are some instances, however, of flowers which open only in darkness, and shut up their blossoms on the approach of light: M. Decandolle, a French botanist, who tried some curious experiments on the subject, found that the Mirab'ilis Jal'apa, Marvel of Peru,
opened its flowers when put into a very dark place, but shut them even at night when artificial light was introduced.

Trees show how beneficial the light is to them, by their branches being generally thicker and more full of leaves on the side exposed to the sun than on the opposite one. — And the knowledge of this circumstance is very useful to the Laplanders, who are unacquainted with the compass, and would lose their way in their long journeys, through wild districts without roads or paths, if they were not guided by this and other natural appearances, which enable them to distinguish the points of north and south. — The inhabitants of several other countries also make great use of their observations on the appearances of plants. Some tribes of American-Indians plant their corn “when the wild-plum blooms,” or “when the leaves of the oak are about the size of a squirrel’s ears;” and some of their months are named from the state of vegetation; one is called the budding month, another the flowering month, one the strawberry, and another the mulberry month; and the Autumn is expressed by a term which signifies “the fall of the leaf.”
CONVERSATION THE FOURTEENTH.

CLASS 15. TETRADYNA'MIA. — ORDERS. — CHEIRAN'-THUS CHEI'RI, COMMON WALL-FLOWER, EXAMINED. — CLASS 16. MONADEL'PHIA. — ORDERS. — MAL'VA SYLVES'TRIS, COMMON MALLOW, EXAMINED. — YEW-TREE. — PINES; THEIR VARIOUS USES. — COTTON-PLANT.

MOTHER.

I hope, Edward, that we can examine two plants to-day,—which I know will give you pleasure,—for I have not much to tell you about the fifteenth class, Tetradynamia. Do you recollect how it is distinguished?

EDWARD.

The flowers contain six stamens; four of them long, and two of them short.

MOTHER.

You are quite right; but as the difference of their length is not always very striking, and the plants of the sixth class have the same number of

1 5
stamens, it will save you trouble, to remember that the flowers in the class Hexandria never have four petals, while those of the fifteenth class always have that number. The last are generally called Cruciform, or cross-shaped, from the four petals being so placed as to form a kind of cross; and this circumstance forms the natural character of the class Tetradyamania.

In moist situations, and during wet seasons, the cruciform plants acquire a hot and biting taste, like mustard; but none of them are poisonous. Even the common Turnip, Brasica Rapa, whose root in a dry sandy soil is so sweet and juicy, becomes, in wet land, hard, and disagreeable to the taste; and the common Horse-radish, Cochlea'ria Armoracia, when it grows near water, is so extremely acrid that it can hardly be used.

The orders of this class, you may remember, are two; and are distinguished from each other by the shape of the seed-vessel, which in both is a Pod. In the first order, Siliculosa, the pod is broad and short; and in the second, Siliquo'sa, it is long and narrow.

The first order contains about twelve native genera: among which are Sea-kale, Crambe maritima; Shepherd's-purse, Thlaspi Bur'sa-pasto'ris; Candy-tuft, I'beris ama'ra, which is very often cultivated in flower-gardens; and common Whitlow-grass, Dra'ba ver'na, a pretty little plant,
Cheiranthus Cheiri - Common Wall Flower:
Class XV. TETRADYNAMIA - Order SILIQUOSA.

Published July 1823 by Longman & Co.
which shows very well the effect of climate upon vegetables; for in Sicily it is in flower all through the winter; in England, Holland, and France, it does not begin to flower till February; in Germany, in March; and in Sweden it does not flower till the month of April.

The second order, Siliquo'sa, contains about eleven native genera, some of which we use as food. The common Water-cress, for instance, *Sisymbrium Nasturtium*; the Turnip, *Brassica Rapa*; Cabbage, *Brassica oleracea*; Rape, *Brassica Napus*, which is cultivated chiefly for the sake of the oil that is procured from its seeds; Mustard, *Sinapis nigra*; and the Radish, *Raphanus Raphanistrum*. The Chinese Cabbage, *Brassica chinensis*, is to the people of China nearly what the potatoe is to the Irish. It is prized by all classes, and is considered a necessary of life: it often weighs from fifteen to twenty pounds, and reaches the height of three or four feet. — The leaves are used raw, as salad; and, when boiled, they have the flavour of asparagus.

The Wall-flower, too, that you brought in from the garden, to learn from it the different parts of a flower, is in this second order. It is a good example of the class, and we will now examine its character. [Plates 17. and 1.]

The pods that contain the seeds, you perceive, are long; the order therefore is Siliquosa, in which
there are two divisions of the genera;—one having the calyx open, with the leaflets spreading; the other, to which this plant belongs, having a close cup, and the leaflets approaching each other at the top. This genus is named Cheiran'thus, and is distinguished from the others, of the same division, principally by two little roundish bodies, called glands, which surround the bottom of the two shorter stamens [Plate 1.]; but they are not easily seen without the assistance of a magnifying glass. These glands form the nectaries of the Wallflower, as I have already mentioned to you.—“The "cup consists of four upright spear-shaped leaflets, "of which the two outermost bulge, or swell a "little, at the bottom. There are four petals, "forming a cross, the claws as long as the cup. "The four long stamens are of the same length as "the calyx; and the two shorter ones curved out- "wards at the lower part,”—being pushed out, as it were, and made to appear shorter, by the glands that surround them at the bottom. “The anthers "are long, upright, pointed at the top, and cloven "at the bottom. The germen is as long as the "filaments, and supports a very short style, with "a divided summit. The seed-vessel is a long "pod, containing several flat egg-shaped seeds.”

The specific name of our plant is Chei'ri. It is supposed by several botanists to be a variety of the native species, Fruticulo'sus, and is so common in
all our gardens, that I wished to examine it with you. It differs, however, from the plant that grows wild on old walls, and the roofs of houses, in having somewhat larger flowers, with petals not of an uniform yellow, but stained with brown or rust colour; but the two plants are very nearly alike. The leaves are spear-shaped, and the stem is somewhat shrubby.

There are two other native species of Cheiran' thus; one of which, the inca'anus, or Stock-gillyflower, is very much cultivated in gardens, and has been found wild only in one place in England. The sinua'tus, or Sea-stock, grows upon the sea-shore; and in both these species the flowers are purplish, and the whole plant is covered with a short whitish down.

EDWARD.

The stem of the Wall-flower is so hard and woody, that it is very like a shrub. Is it one?

MOTHER.

No, my dear; but, from its having a woody stem, it is called shrub-like. It is a perennial plant; and in old gardens I have seen the stem so thick, and so like wood, that I could almost have mistaken it for a shrub myself: and I have been told that it will grow very well from cuttings, in which it agrees with shrubs.
We have now done with the class Tetradynamia; and as I am afraid that the character of the sixteenth class, Monadelphia, is not easily remembered, we had better look at your drawing, and go over the description again.

EDWARD.

Here it is [Plate 2. fig. 16.]: the filaments are all joined at the bottom, but separate at the top.

MOTHER.

Yes; and the class is called Monadelphia, from two Greek words, which signify one brotherhood. In most of the classes that we have already examined, the orders are determined by the number of pistils; but in this one the number of the stamens determine the order. All the genera hitherto discovered form under eight orders, but only three of these contain plants that grow wild in England: Triandria with three stamens, Decandria with ten, and Polyandria with more than twenty.

In this class, the calyx is the part by which the different genera are principally distinguished: and it is of great importance.

The order Triandria contains, according to Withering, but one native genus; and there is only one native species of it, the Juniper-tree, Juniper'erus commu'nis. * The berries of this plant are two

* Class Dioecia, order Monadelphia, of Linnæus.
years in ripening, and afford an oil, which gives the flavour to gin or juniper-water. The ripe berries, when dried, were used in this country as we now use pepper, before that spice became common. The bark is sometimes made into ropes; and the wood of juniper, which is hard and durable, and of a reddish colour, is used by cabinet-makers for different purposes. Frankincense, which is the produce of another species, Junip'erus ly'cia, is brought to this country from Turkey and the East Indies, but principally from Arabia. The wood used in making black-lead pencils, though commonly called Cedar, is really that of another species of Juniper, Junip'erus bermudia'na, which grows to a considerable size.

The Tamarind-tree, Tamarin'dus in'dicus, whose fruit is so delightfully acid, is a native of the East and West Indies, and belongs also to this order.

The Gera'niun, of which there are several native species, and a great number of foreign ones, is the only genus in the order Decandria, of the class Monadelphia. It has, however, been divided by M. L'Heritier, a French botanist, into three genera—Ero'dium, Pelarg'o'nium, and Gera'nium: the first two of which he has placed in the order Pentandria, and only the last in Decandria. The Geraniums found in Africa are much larger, and have far more brilliant flowers, than those which grow in Europe; but some of the species that we
find in our own woods and hedges are very beautiful. The seed-vessels of all these genera are wonderfully constructed, and are well worth your observing.

In the order Polyandria, there are, according to Withering, five native genera: the Marsh-Mallow, Althæ'a; common Mallow, Mal'va; tree Mallow, Lavate'ra; the Yew-tree, Tax'us; and the Fir or Pine-tree, Pinus: but the last two genera are in the classes Dioecia and Monoecia of Lin-næus.

EDWARD.

I have seen the common Mallow so often, that I should like to examine it.

MOTHER.

Well, then, bring in some of it, and we will go through the description. You cannot fail to meet with it in the next hedge.

EDWARD.

It looks as if there were two calyxes. [Plate 18.]

MOTHER.

It has what is called a Double calyx, or one within another; and it is the structure of the outer calyx, which is distinctly composed of three leaves, that constitutes the principal character of the genus Mal'va; Lavate'ra having an outer cup of
Malva sylvestris _Common Mallow._

Class XVI. _MONADELPHIA_ Order _POLYANDRIA._

Published July 1828 by Longman & Co.
one leaf, with divisions only, not three separate leaves; and in Althæa, of which the Hollyhock in our garden is a Chinese species, the divisions are nine. "The inner cup of the Mal'va is of one "leaf, with five shallow divisions. The blossom is "composed of five heart-shaped flat petals, united "at the bottom to the tube formed by the filaments. "The middle of the receptacle rises like a little "pillar; and the seed-vessels, which are generally "eight in number, with one seed in each, stand "round it in a circle."

There are three or four native species of Mal'va: ours, which is the sylvestris, or common Mallow, is distinguished from the others by a rough, upright, and somewhat woody stem. The leaves are hairy, with five or seven divisions, and a dark purplish stain on the lower part of each, near the stalk; the edges unequally notched: the leaf-stalks and fruit-stalks are hairy. The ancients made considerable use of mallows in their food; but these plants are no longer employed for that purpose.

Of the Yew-tree, Taxus, there is but one species, bacca'ta, native in England, the wood of which is uncommonly hard, tough, smooth when cut, and beautifully veined with red. It is so durable, that it is a common saying, amongst the inhabitants of New- Forest, in Hampshire, that a post of yew will outlive a post of iron. Yew-trees were
formerly very generally planted in churchyards in this country, and were employed by the parishioners for making their long bows, in the use of which our ancestors were very skilful.

The Yew, though of slow growth, sometimes attains a great size. Pennant mentions one in Fon-tingal churchyard, in the Highlands of Scotland, the ruined trunk of which measured fifty-six feet and a half in circumference; and I have myself seen one at Crowhurst in Sussex, the stem of which was more than thirty-six feet round.

The genus *Pinus*, or Pine, includes several species; but the only native one is the *sylvestris*, or Scotch Fir, which grows plentifully throughout the Highlands of Scotland. When this tree is planted in a grove, the trunk becomes tall and naked; but in open sunny places it sends off numerous branches. It is said to live sometimes to the age of four hundred years. The wood, which is called red deal, is very smooth and light. The bark will tan leather, and in years of scarcity it is dried, ground to powder, and made into bread, by the people of the north of Europe. The inhabitants of the Scottish Highlands dig up the roots, and divide them into small splinters, to burn instead of candles: for they contain a great quantity of resin, and easily take fire.

* Class Monoeccia, order Monadelphia, of Linnaeus.
The black Spruce, *Pī'nuς nī'gra*, is a native of North America. The young shoots of this species are used for making spruce-beer.

The *Pī'nuς Ce'drus*, Cedar of Lebanon, grows on mountains in the Levant, especially on the celebrated Mount Lebanon, from which it takes its name. The wood is not destroyed by insects, which cannot endure its bitter taste; and for this reason the ancients used tablets of cedar to write upon, and smeared their books and writings with a juice drawn from the wood, to preserve them. Solomon’s temple and palace, it is supposed, were built of this wood.

The Larch-tree, *Pī'nuς La'rīx*, is a native of the Alps and Apennines, where it sometimes grows to the height of nearly two hundred feet. The wood is said to be more durable even than oak, and has the valuable property of not warping or shrinking. It was used by painters more than any other, before the use of canvass became general, and several of Raphael’s pictures are painted on boards of larch. The piles upon which the houses of Venice were built, many hundred years ago, are of this wood, and are still fresh and sound. The resinous substance, erroneously called Venice-turpentine, is extracted from the tree.

The Norway Pine, *Pī'nuς A'bies*, affords the white deal, which is employed for so many useful purposes in England; and it is from the sap of this
species that pitch, tar, common resin, and turpentine are obtained. You will find an account of the method of preparing these different substances very curious.

EDWARD.

What are the cones that we see on the fir-trees in the shrubbery?

MOTHER.

They are the seed-vessels or fruit of the fir:—the Cone, or Strob'ilé, as botanists call it, is a tough, woody seed-vessel, consisting of the general receptacle, with a number of hard scales attached to it. When the fruit of the pine is mature, these scales lie on each other like tiles; covering the seeds, or nuts, so completely, as to have the appearance of one undivided body. In this state, the cone hangs upon the tree during the winter-season, and protects the inclosed seeds; but as soon as the warm weather comes again, the scales begin to shrink and separate, leaving openings for the ripe seeds to escape. If a number of cones happen to burst at the same moment, which is often the case, the noise can be heard at a considerable distance.

EDWARD.

Are there any other useful plants in this class, besides the pines?
MOTHER.

That which produces cotton is the principal one that I recollect. The botanical name of the genus is Gossypium, and all the species at present known are natives of the East and West Indies. What we call cotton is a soft downy substance that surrounds the seeds; which, in one species, the common Cotton, Gossypium herbaceum, is of a snowy white: but in the species barbadense, which grows in Barbadoes, and in great perfection in the Chinese province of Kiang-nan, of which Nankin is the capital city, the down, in its natural state, has a yellowish colour inclining to red. The kind of cloth called Nankin, which is made of it in China, is of great value, because it is very strong, and fades very little, even after long use and frequent washing.
CONVERSATION THE FIFTEENTH.

CLASS 17. DIADEL'PHIA.—PAPILIONACEOUS FLOWERS. —SLEEP OF PLANTS.—POD AND LEGU'MEN.—LO'TUS CORNICULA'TUS, BIRD'S-FOOT CLOVER, EXAMINED.—TREFOILS.—FURZE.—INDIGO.—MOVING PLANT.—ACACIA.—CLASS 18. POLYADEL'PHIA.—HYPER'ICUM ANDROSÆ'MUM, COMMON TUTSAN, EXAMINED.—CHOCOLATE-NUT.—ORANGE AND LEMON TREES.

EDWARD.

I THINK I can tell you the character of the seventeenth class, Diadelphia: the filaments are all united in two sets.

MOTHER.

That is certainly the character given by Linnaeus: but some other circumstances must be attended to, besides the connection of the stamens and number of the sets; for the flowers of different genera in this class differ from each other in these respects; some having the filaments united in one set only. In doubtful cases, the shape of the blossom will enable you to decide; for it is always irregular,—that is, the petals are unequal, and of different
figures; and it has generally some resemblance to a butterfly, like the sweet-pea blossom that you see in the garden; for which reason the flowers of this class are called Papilionaceous, from the word Papilio, the Latin for a butterfly. In flowers of this shape, the number of stamens is most commonly ten; which sometimes are all quite distinct; — and then, of course, the plant would be referred to the class Decandria: but whenever you meet with a flower shaped like a butterfly, if any of the filaments are joined together, you may be sure that it belongs to the class Diadelphia of Linnaeus.

The Orders, of this class, depend upon the number of the stamens; which are either five, six, eight, or ten. The last number is by far the most common; nine of the stamens being generally united, and the tenth standing by itself.

You will understand better what I have said about the shape of the flowers, when we have examined a plant of this class; and I think I have seen one in the meadow near the gardener's house. Let us go and look out for it.

EDWARD.

Here is a very pretty plant, with a blossom something like what you have just told me of; but the flower is so different from those we have examined already, that I don't think I can understand the parts by myself.
The shape of the blossom in this class is so peculiar, that its petals, which are five, are called by different names. Take off one of the flowers, and I will show them to you. [Plate 19.] This large uppermost one, that turns backwards, is called the Standard; the two next, which are both alike, and placed one on each side, are the Wings; the lowermost, between the wings, is called the Boat or Keel, and is generally composed of one hollow petal, but sometimes of two: this contains within it the stamens and pistil, which it defends from rain.

The flowers of this tribe in general spread out their wings in fine weather, to admit the rays of the sun, and fold them up again as the night approaches.—I have lately read an account of the manner in which Linnaeus first discovered this fact, which shows how attentive he was to the appearances of nature. A friend having sent him some seeds of a papilionaceous plant, he sowed them in his greenhouse, and they soon produced two beautiful flowers. The gardener was absent when these were first observed; and in the evening, when Linnaeus took with him a lantern to see them, they were nowhere to be found; so that he himself supposed they had been destroyed by insects, or by some accident; but the next morning,
Lotus Corniculatus. *Birds' foot Trefoil*.

Class XVII. DIADENPHIA. Order DECANDRIA.
to his great surprise, he found his flowers just where they had been the day before.—He took his gardener therefore again in the evening to look at them;—they were not to be seen; but the next morning again he found them looking as fresh as ever. The gardener said, “These cannot be the same flowers; they must have blown since.” But Linnaeus himself was not so easily satisfied: as soon as it was dark he visited the plant once more, and lifting up the leaves, one by one, he found the two flowers folded up, and so closely concealed under them, that it was impossible, at first sight, to discover where they were. This led him to pay attention to other plants of the same tribe: he had the satisfaction to find that they all possessed the property, in a greater or less degree, of closing their flowers at night; and this, for want of a better term, he called “the Sleep of Plants.”

Do you think you can find the germen or seed-vessel of the plant in your hand?

EDWARD.

I believe I can; but it is not very distinct.

MOTHER.

You will find it more so in the flowers that have shed their petals; but for the unripe ones you must use your magnifying-glass.
EDWARD.

Is it not a pod? It is something like the seed-vessel of the wall-flower, and is full of little seeds.

MOTHER.

It is something like a pod; but there is a remarkable difference, which you must remember. In the seed-vessel of the wall-flower, you recollect, there was a partition between the two outer shells, upon both sides of which the seeds were arranged, being fixed alternately to different edges: but in this seed-vessel (and you will see the same thing more plainly in the common pea) there is no partition; all the seeds are fastened to one of the seams; but in such a manner, that when the seed-vessel is opened, they lie alternately in the two shells. I have made a drawing to explain this to you more distinctly.

Pod, with one side opened.

Legu'men.

Legu'men opened.
This last kind of seed-vessel is called a Legu′-men; and the plants that bear it are said to be Legu′minous. Very few of them are poisonous; indeed, most of them produce very wholesome food for man and the larger animals; but there is one species found in the West Indies, called Jamaica Dog-wood, or Fish-bean, Piscid′ia Erythri′na, the leaves and branches of which, when thrown into water where there are fish, have such an effect upon them, that they come up and float upon the surface, and may be easily taken with the hand. The seeds of the Labur′num, Cyt′isus Labur′num, and of Lupine, Lupi′nus, are also extremely nox-ious. I have heard of a child being killed by eating only three or four Laburnum-seeds; and Hasselquist, a Swedish botanist, who travelled in the East, informs us, that the inhabitants of Egypt, who live near the banks of the Nile, and are often annoyed at night by the hippopotamus, or river-horse, a very large animal, which does great mis-chief to their gardens and fields, destroy this troublesome visiter by placing Lupine seed near his haunts, which he devours greedily.

But let us examine our plant. [Plate 19.]

If you reckon the stamens, which are of different lengths, you will find that there are ten; nine of them united together at the lower part, into a sort of membrane, which covers the germen. The
order, then, is Decandria; and this contains so many genera, that, for convenience, it is subdivided into six sets, four of which depend, chiefly, upon the shape and structure of the legumen. This plant belongs to the division that has a legumen of one cell, with several seeds: the name of the genus is Lo'tus; and the principal characters are, that the wings of the flower nearly meet at the upper part, and that the legumen is round and full. The species that we have is the cornicula'tus, or Bird's-foot Clover; — which is distinguished by the heads of flowers, consisting of a small number only, and being flat at the top; the legumens spreading out like the spokes of a wheel; and the stems generally trailing on the ground. The leaves have three divisions, of an oblong figure; and where they spring from the stalks, there are two other little leaves, called Stip'ules, which are of a different shape from the divisions of the leaf itself. The flowers, before they open, are of a red colour; but, when expanded, of a rich yellow. The plant varies very much in different situations: it is Decumbent, or commonly grows near the ground; but in meadows it is often upright, like this specimen.

The genus Lo'tus is one of a very numerous tribe of plants, called Trefoils, from the genus Trifo'lium, which signifies three-leaved, — because each leaf looks like three. The common English name
of the trefoils is Clover, and almost all the species are of great value to farmers, for they afford good pasture for cattle, and make excellent hay.

EDWARD.

I have often seen both purple and white clover; but I do not think the flowers looked as if they were butterfly-shaped.

MOTHER.

You probably took each head of clover for a single flower; but if you examine one of them, you will soon find that it consists of a great number of small flowers; each of which has a little calyx of its own, with a blossom as perfect as that of the Lo'tus, and composed of a standard, two wings, and a keel. But if you wish to see the stamens and pistils distinctly, you must look at them through your magnifying glass.

EDWARD.

How pretty the little flowers must be! When I go out to-day I will gather some clover, and examine it.—Are the peas and beans, that we eat, in this class, as well as the sweet-pea in the garden?

MOTHER.

They are, my dear; and in the order Decandria also; as are too the kidney-bean, Phase'olus vul-
ga'ris; the Vetch, Vicia; wild Liquorice, Astrag'alus; Lucerne, Medica'go sati'va; and Saintfoin, Hedys'arum. The botanical name of the Pea is Pi'sum, and the species that we eat is the sati'vum, of which there are several varieties. The Bean is a species of vetch, Vicia Fa'ba: but neither of the last-mentioned species is a native of England. The pea came originally from the south of Europe; and a great many varieties of the seed have been produced by cultivation, which differ very much from each other in size and flavour. The bean is a native of Egypt.

The garden Sweet-pea is a native of Sicily; its botanical name is Lath'yrus odora'tus.

The common Broom, Spar'tium scopa'rium, belongs to this class, and grows wild in England, as well as the Dyer's Green-weed, Genis'ta tincto'ria, and the Furze, U'lex europæ'us, that you see in such large bushes on the heath. This last shrub, though it is so abundant in England, is by no means common in other parts of Europe: Portugal and France produce it more plentifully, perhaps, than any other country except our own. When Linnaeus came to England, in the year 1736, he was so much delighted with the golden bloom of the furze, which he saw for the first time on the commons near London, that, it is said, he fell on his knees to admire it. In Cornwall this plant grows, with great luxuriance, to the height of six
or eight feet; but it will not bear severe cold. Linnaeus tried to preserve some plants of it through the winter in Sweden, under cover, with as much care as we bestow on hot-house plants, but without success.

Dyer's Green-weed, Genis'ta tincto'ria, is a native of England, and is frequently met with on dry banks in the borders of fields. The whole of the plant dyes a yellow colour, and is preferred to all other yellows for colouring wool; and by means of Woad, Isa'tis tincto'ria, a plant of the fifteenth class, which affords a blue tint, the yellow can afterwards be made green.

The name of Plantagenet, of which you have read so much in the history of England, is supposed to be derived from this plant. Fulke, Earl of Anjou, who lived a century before the Norman conquest, was enjoined, by way of penance for some crime which he had been guilty of, to go to the Holy Land: he wore, it is said, a sprig of genista in his cap, as a mark of humility, and afterwards adopted from it the title of Plantagenet, Planta-genis'ta or genes'ta, which his descendants retained.

The remaining plants of the class Diadelphia, that I shall mention to you, are not natives of England.

That which affords the Indigo, with which blue cloth is dyed, Indigo'fera tincto'ria, in the order
Decandria, is a native of the East Indies. The dye is obtained by steeping the leaves and small branches of the plant in water, and drying the sediment which they deposit. It is a light substance, somewhat of the consistence of raw starch, but of a deep blue colour. In this prepared state indigo is poisonous; but the plant itself is harmless. All the different species of Indigofera afford it; which is the case indeed with several other leguminous plants. The leaves of the Lo'tus cornicula'tus, as they dry, become blue.

A foreign species of Saintfoin, called the Moving plant, Hedys'arum gy'rans, of a genus belonging to the class Diadelphia, is very remarkable. It grows on the banks of the river Ganges, near Bengal, in the East Indies, and was first made known in England in the year 1772, when it was produced from seeds brought from India. It is an annual plant, and grows to the height of three or four feet: the leaves are of a bright green colour, and the flowers generally of a pale red. Its leaves possess the singular property of moving, without being touched; sometimes one of them will move suddenly, while the rest remain still; at other times they all move together, or separately, without any regularity; and even when detached from the plant they still retain their power of motion.—You will find hereafter, that there are several other marks of a sort of feeling, among plants of differ-
ent tribes. The leaves of the trefoils always fold themselves up when rain approaches.

Gum Trag'acanth is the produce of another plant in the order Decandria of this class, great Goat's thorn, Astrag'alus Tragacan'tha,—a thorny shrub, which grows in the islands of the Levant. The gum which exudes from its stem and branches resembles gum-arabic in many of its properties; it is used in medicine, calico-printing, and in making ink.

The Acacia-tree, Robin'ia Pseu'do-a-ca'cia, which is so much admired in our shrubberies, has such very brittle wood, that a slight blast of wind is sufficient to break off its branches, and it is consequently not fit for exposed situations; but it makes amends for this defect, by sending up from its roots innumerable suckers, which grow very rapidly. I have read of a farmer, at Long Island, in North America, who, during the year after his marriage, planted a field of fourteen acres with suckers of this tree, as a provision for his children. When his eldest son married, at twenty-two years of age, the farmer cut down about three hundred pounds' worth of timber, out of his acacia wood; and gave the money to his son to buy a farm with. Three years after, he did the same for one of his daughters; and in this way he provided for his whole family in succession: the wood, in the mean...
time, repairing by its suckers all the losses that it sustained.

We have now come, Edward, to the eighteenth class, Polyadelphia.

EDWARD.

Is it not in this class that the Stamens are united into more than two sets?

MOTHER.

Yes; but in some species the filaments are so much separated, that unless you examine them quite down to the bottom, you might suppose that they were all distinct, and consider the plant as belonging to the class Icosandria or Polyandria.

The orders, according to Linnæus, depend upon the number of the stamens; and the plant that I have chosen for you to examine [Plate 20.] belongs to the third order, Polyandria, which contains plants with very numerous stamens, not fixed to the calyx.

In the genus Hypericum, the only genus of native plants in this class, "the calyx is placed below "the germen, and has five divisions; the petals are "five in number, and blunt at the ends; the sta-"mens are very numerous, like hairs, and united "at the base into three or five sets, corresponding
Hypericum Androsaënum. _Tulson._
Class xviii. POLYADELPHIA. Order POLYANDRIA.

Published April 2, 1828, by Longman & Co.
“with the number of the styles: the capsule is "round: it is divided into as many cells as there "are styles, and contains several seeds.”

This species of Hypericum, the Androsae'mum, though not very common in England, happens to grow in our neighbourhood, and shows the character of the class very distinctly. It may be known from the others, by having three pistils,—
a shrub-like stem with two edges,— and fruit consisting of a pulpy berry, which is black when ripe. The flower is large, and of a rich yellow colour; and the plant grows naturally in woods, and in damp ground under hedges: it generally blossoms in July and August, but the flowers seldom expand fully, except in very bright sunshine. The English name of our species is Tutsan.

The most remarkable foreign genera of this class are the Chocolate-nut-tree, Theobro'ma Caca' o; the Orange and Citron trees, Ci'trus Auran'tium and Med'ica, of which last the Lemon and Lime are varieties; and the Caju-Puti-tree, Melaleu'ca Leucaden'dron, a native of the East Indies, from which Cajeput oil is obtained. — The Chocolate-nut-tree is very handsome, and grows naturally in South America to the height of twelve or sixteen feet: it bears leaves, flowers, and fruit, all the year round: the seeds are very nourishing; they are generally ground to powder and made into a paste, in which state they are much used in America. —

κ 6
Orange and citron trees are very handsome evergreens, and frequently cultivated in green-houses in England; but they are generally much smaller with us than in their native country, the warmer parts of Asia, where they grow to the height of twelve or fifteen feet. From one of the varieties of orange-tree, the perfume called bergamot is obtained: it is said to have derived its name from Bergamo in Italy. Although the oranges produced in Malta, which is not far from Italy, are now the most esteemed in Europe, the fruit was unknown to the ancient Greeks or Romans. Orange-trees sometimes live to a great age. I have seen one in the gardens of Versailles, near Paris, said to be more than four hundred years old.
Bellis perennis Common Daisy.

Class XIX. SYNGENESIA Order POLYGAMIA SUPERFLUA.
CONVERSATION THE SIXTEENTH.

CLASS 19. SYNGENÉSIA.—STRUCTURE OF A COMPOUND FLOWER.—AGGREGATE FLOWER.—NATURAL CHARACTER OF THIS CLASS.—CALYX, SEEDS, AND DOWN.—ORDERS.—BEL'lis PEREN'NIS, COMMON DAISY, EXAMINED.—OTHER PLANTS OF THIS CLASS.

MOTHER.

I have brought in a Daisy, Edward, for you to examine this morning; and before I tell you anything of the nineteenth class, Syngenesia, to which it belongs, we will try to find out how the flowers are constructed. [PLATE 21.]—At first, you perceive, they do not look like any of those that you have already examined.

EDWARD.

No, indeed!—There is a sort of cup, and a great many white and pink petals; but instead of stamens and pistils in the middle, I see only a great number of yellow dots. What are they?
MOTHER.

Pull off all the parts that are within the cup, and look at them again with your magnifying glass.

EDWARD.

Oh! now I see that the yellow spots were the tops of beautiful little things like flowers; and these, I suppose, are seeds, below them.

MOTHER.

Well; now I will open one of these little flowers with my needle, for it requires some practice, and you cannot do it so readily yourself. — Can you perceive with your glass, that each little blossom is shaped like a funnel, with five divisions in its border? — The stamens are so small in the daisy, that you can hardly see them: but in larger flowers of this class, you will find that they are five in number, with the filaments distinct, but the anthers joined together, side by side, like a tube; a single pistil with a notched summit passes up through this tube,—and there is an egg-shaped seed below.

EDWARD.

How very beautiful it is!

MOTHER.

Now look at what you called the white and pink
petals, and try if you can describe one of them as they appear to you.

EDWARD.

They look like little blossoms too, but they are very different from the yellow ones. There is a long white part, tipped with red, coming out from one side; and the blossom looks as if the other petals had been torn off.

MOTHER.

The white part is one of the divisions in the border of the little blossom, but much longer than the rest; you see it is shaped something like the head of a spear, blunted, with a very slight notch at the end; and you will find, with your glass, that the other part of the border, which you thought was torn, has three very small teeth. Upon opening the blossom, you perceive that there are no stamens, but the style comes up from the seed through the tube of the blossom itself, and has two summits curled a little backwards. There is no seed-vessel: but the seeds, as in the little yellow flower that we have just examined, are single, naked, shaped somewhat like an egg a little flattened, and placed immediately below the blossom. Now, if you look at the receptacle, from which we have pulled off all these little flowers, you will find that it stands up, like a sugar-loaf, in the middle
of the cup, and is dotted all over with little holes; these are the places in which the seeds were fixed; and when I cut down through the sugar-loaf, you see that it has a soft pith within. [Plate 21.] This flower is called the Daisy, or the eye of the day, from its opening to the rising sun. When the sun is declining, the flower shuts itself up, as if to take its rest. — It has always been a favourite with poets; and Chaucer, who lived in the fourteenth century, and was one of the first to take notice of the opening and shutting of flowers at particular times of the day, expresses great partiality for it.

EDWARD.

And is every daisy that we see in the fields made like this, of so many beautiful little flowers?

MOTHER.

All the flowers of this class,—not only the daisy, but the Dandelion, the Thistle, and a great number of the most common wild flowers, are formed nearly in the same way; and their separate parts, when magnified, are equally beautiful and curious. But there are differences in their shape and arrangement, that enable botanists to divide the class into orders and genera, which you will now be able to understand. I shall not, however, give you more than a general explanation of them; for I do not advise you to examine many plants
of this class, until you are better acquainted with those that have larger and more simple flowers.

The class Syngenesia comprehends the flowers which botanists call Compound,—that is, which are composed, like the daisy, of a number of small flowers, or Florets, all placed upon the same receptacle, and within one common calyx: the stamens being five in number, with distinct filaments; but the anthers united side by side, so as to form a little tube.—There are other flowers, also composed of florets, but in which the anthers are not united into a cylinder: as the Scabious and Teasel, in the class Tetrandria. These are called Aggregate Flowers.—And you must remember this, for the general appearance of these plants might otherwise lead you to suppose that they belonged to the class Syngenesia.

Compound flowers are all so far alike, that the class Syngenesia has a very perfect natural character, which their general resemblance to the daisy will sufficiently point out to you; but the calyx and seeds, in particular, are to be attended to.

The calyx consists sometimes of a single row of leaves or scales; sometimes of two rows, as in the daisy; and in some flowers, as in the common Artichoke, the scales are placed over each other, alternately, like tiles upon the roof of a house. The calyx, in many instances, opens as
the florets expand, and closes when they fall off, as if to confine the young seeds; but as the seeds ripen and increase in size, it opens again to make room for them; and in some plants turns quite back, to let them escape. The Dandelion and Coltsfoot are in this state, when you see their heads covered with down.

The seeds, in several of the species, are very remarkable: they are placed below the corolla, and there is never more than one to each floret. In many instances, they are tipped with a beautiful sort of down, consisting of a great number of spokes, or rays; these spokes, themselves, are sometimes branched or feathered; and in some cases, as in the common dandelion, the entire wheel is fixed upon a sort of stem, or pillar, which is itself fastened to the seed. Thus:

ORDERS OF THE CLASS SYNGENE'SIA. 211

The down is a beautiful object for the microscope; and its use is very important; for it enables the wind to carry the seeds to great distances from the plant, and to sow them, as it were, in situations which otherwise they might never have reached.

EDWARD.

The down of the Coltsfoot is very soft, like cotton. Is it ever made any use of?

MOTHER.

I have heard of its being used for making tinder. The poor people in the Highlands of Scotland stuff pillows with the down of several different plants.

The Orders, in the class Syngenesia, are founded upon the uniformity or diversity of the florets,—and on the manner in which the florets, when of different kinds, are disposed in the compound flower; for the florets may be all of one kind; or there may be some of one sort in the centre, and others of different structure at the circumference, or border of the flower.

In the first order, called Polyga'mia equa'lis, all the florets have both stamens and pistils; and each floret has one seed.

In the second order, Polyga'mia super'flua, the florets of the centre have both stamens and pistils;
but those of the border, pistils only: and all have seeds.

In the third order, Polygamy frustra'nea, the florets of the centre have both stamens and pistils; but those of the circumference have neither.

In the fourth order, Polygamy necessaria, the florets of the centre have stamens only, without seeds: and those of the border have pistils only, with seeds.

In the fifth order, Polygamy segregata, the structure of the flower is not quite like that of the rest. The florets have all five stamens, with united anthers, and they are all included in one general calyx: but each floret has, besides, a little calyx of its own. Of this order there is no native genus.

EDWARD.

I am afraid it will be a long time before I know this class well; for the orders are more difficult to understand than those of the other classes.

MOTHER.

You will soon find, that the knowledge you acquire, by examining a few plants yourself, will remove whatever you now suppose to be a difficulty, and give you better instruction than any thing that I can tell you. The chief thing to be attended to, in the class Syngenesia, is the Union of the Anthers;
for there are some flowers in other classes, which at first you might suppose to belong to this one, but whose anthers are not united. And with regard to the orders, it is only necessary to observe how the florets which contain the stamens or pistils are disposed in the compound flower.

We may now go on to the characters of our Daisy. — The florets in the centre of the flower have both stamens and pistils; but those in the circumference pistils only: it is then in the second order, Polygamia superflua. The name of the genus is Bel'lis; which is distinguished from the other genera, of the same order, by the receptacle being conical, without hair or bristles; the calyx is roundish; and the seeds egg-shaped, and without down. There is only one native species, the peren'nis, or common Daisy: and its distinctions from the foreign species are, that the flower-stalks have no leaves, each supporting only a single flower: and that the root is Creeping, — that is, spreading to some distance, and putting forth fibres. The Daisy is in blow almost all the year round, but shuts up its flowers every night, and on the approach of rainy weather.

You can never fail to procure plants in this class, for it is a very numerous one, and contains several that grow wild in England. Among others, the Dandelion, Leon'todon Tarax'acum; Burdock,
Arc'tium Lap'pa; Thistle, Car'duus; Tansey, Tanace'tum vulga're; Coltsfoot, Tussila'go far'fara; Groundsel, Sene'cio vulga'ris; the Ox-eye Daisy, Chrysan'themum Leucan'themum; Blue-bottle, Centau'ria Cy'anus; and Chamomile, Anthe'mis nob'ilis. — Of these, the dandelion is, perhaps, the most common, growing on rubbish and uncultivated land, as well as in meadows, where you have seen it, and bearing flowers the greater part of the year. In France, this plant is very much used in salad; and at Gottingen, the roots are roasted and used like coffee by the poorer inhabitants. The juice of the roots and leaves is employed as a medicine in this country. The name Leon'todon is taken from the resemblance of the shape of its jagged leaves to the teeth of a lion; and the En-glish name Dandelion, which is a corruption of the French Dent de lion, expresses the same idea.

The Artichoke, Cyna'ra Scol'ymus; Dah'lia; China Aster, As'ter chinen'sis; and Sun-flower, Helian'thus, of which there are several species, belong also to the class Syngenesia. The artichoke is a native of the south of Europe, where it is much more generally used than with us, and is even eaten raw with salt and pepper. The com-mon Sun-flower, Helian'thus an'nuus, grows wild in Mexico and Peru; and the Jerusalem Artichoke, another species, Helian'thus tubero'sus, is a native
of Brazil. The vegetable oil most esteemed in Russia is obtained from the seeds of the Sunflower.

It is remarkable, that yellow is the prevailing colour in the flowers of this class; and that, although most of the plants are bitter, none of them are poisonous;— except, perhaps, the wild Lettuce, *Lactuca virosa*, when it grows in shady situations. No trees, or bulbs, and but few shrubs, belong to it.
CONVERSATION THE SEVENTEENTH.

THE FOUR CLASSES OMITTED BY WITHERING.—
CLASS 20. GYNNAN'DRIA.—NATURAL ORDER OR-
CHID'Æ.—CLASS 21. MONOE'cia.—BREAD-FRUIT-
TREE.—MAIZE.—COCOA-NUT.—INDIAN-RUBBER.—
WATER-PROOF CLOTH.—TALLOW-TREE.—CASTOR-
OIL PLANT.—MANCHINEEL-TREE.—OTHER VALU-
ABLE TREES.—CLASS 22. DIOE'cia.—WILLOWS.—
DATE-PALM.—PISTA'CHIA.—MASTICK.—HEMP.—
NUTMEG.—CLASS 23. POLYGA'MIA.—PLANTAIN.
—SENSITIVE PLANT.—GUM-ARABIC.—FIG.

MOTHER.

You will be sorry to hear, Edward, that we have no plant to examine to-day.

EDWARD.

But there are twenty-four classes; and we have gone through only nineteen.

MOTHER.

Very true; but you may remember my having told you, that Dr. Withering, in his arrangement of British plants, has distributed those of the twentieth, twenty-first, twenty-second, and twenty-
third classes, among the first nineteen, according to the number of their stamens. And although this disposition of them has not been approved of by some very good botanists, I have thought it best, for the reason I have mentioned, to follow it in speaking of the native plants of England.

The plants of foreign countries, however, which belong to these classes, are universally arranged according to the original method of Linnaeus; and some of these are so curious and useful, that I wish to mention a few of them to you. Look at your drawing of the classes [Plate 2. figures 20, 21, 22, and 23.], and you will find a short character of the four omitted by Dr. Withering; their names are Gynandria, Monoecia, Dioecia, and Polygamia.

In the twentieth class, Gynandria, the stamens grow upon the pistil itself,—either on the style or germin; and the orders depend upon their number. The plants which have this character the most distinctly belong to a natural tribe called Orchid'eæ, which includes, besides other genera, the Or'chises, of which there are several native species. I have drawn the flower of one of these, in the table of the classes [Plate 2. fig. 20.], to give you an idea of the general appearance of the tribe; but as their structure is not easily understood, I shall not at present say any thing more about them. From the root of one species, the early
purple Orchis, Or'chis ma'scula, the substance called Salop is prepared.

All the flowers of the classes Monoecia and Dioecia, and some of those in Polygamia, are imperfect; that is, they want either stamens or pistils.

In the twenty-first, Monoecia [Plate 2. fig. 21.], some of the flowers have stamens only, and others, on the same plant, only pistils; but none of them have both. This class contains a number of curious and important genera.

The Bread-fruit-tree, Artocar'pus inci'sa, Mono'e'cia Monan'dria, which is of great use to the inhabitants of the South-Sea Islands, belongs to one of these genera. It grows to the height of about forty feet, and the fruit, which is as large as a child's head, hangs upon the boughs like apples. The eatable part lies between the skin and the core, and is very white, soft, and of the consistence of new bread, with a sweetish taste, like that of the Jerusalem artichoke; but it must be roasted before it is eaten. It is in season for about seven months of the year, and during the whole of that time supplies very wholesome and agreeable food to the inhabitants of the islands; who also make cloth of the bark of the tree, and use the wood in building their huts and canoes. There is another species of this genus, the Artocar'pus integrifo'lia, or Indian Jaca-tree, which is a native of the East
Indies: the fruit is said to weigh about thirty pounds, and is used as food, but not so generally as the bread-fruit.

The Maize, or Indian corn, *Zea Mays*, Monoezia Triandria, is a very useful plant. It is a native of America, and is cultivated in several other countries. The seeds grow in ears, which are very large, each of them bearing about eight rows of grain; and every row contains at least thirty grains, which give much more flour than those of wheat, or any of our kinds of corn. The stalk of the maize is jointed, like the sugar-cane and bamboo, and it contains a juice from which a syrup, like that of sugar, is often made.

The Sago Palm, *Sago Rumphi*, from the pith of which the substance called Sago is prepared, and the Cocoa-nut-tree, *Cocos nucifera*, both in Monoecia Hexandria, were originally natives of the East Indies, but have been introduced into several other warm countries. The cocoa-nut thrives remarkably well on the sea-shore; indeed, the neighbourhood of the sea appears to be necessary to its growth; and M. de Humboldt, a celebrated traveller, mentions, that on the banks of the river Oronoco, when the nut is planted, a quantity of salt is thrown into the hole along with it. The tree grows to the height of sixty feet, and has a fine appearance; the top of the stem being crowned with about fifty leaves, which are from
ten to fifteen feet long, with nuts nearly as large as a man’s head hanging from it, in clusters of about a dozen each. You have often seen the inner shells of these nuts, which consist of a very hard case, and contain a thick coat of kernel of an agreeable flavour, and a sweet milky liquor. The cases are employed with us for making sugar-bowls, and various toys, and are very useful to the natives of the countries where the tree grows. A sort of wine, called Toddy, is made from the sap of the stem, which looks like whey.

EDWARD.

You told me, yesterday, that the mat at the green-house door was made of part of the cocoa-nut. How can that be?

MOTHER.

In their natural state, the inner shells, which contain the kernel, are surrounded with a thick coat, which consists of coarse fibres, with a smooth rind on the outside. The fibrous part is employed for making mats, a purpose which it answers very well. The Indians make ropes of the bark of the tree, and mats, baskets, and brooms, of the leaves.

The wood of the Cypress-tree, Cupres’sus sempervirens, Monoecia Monadelphia, is said to resist worms and moths remarkably, and to last for many centuries. Some of the chests that contain
the Egyptian mummies are made of it; and the coffins in which the Athenians buried their heroes were of cypress wood. The doors of Saint Peter's church at Rome were originally made of this timber, and when they were removed, at the end of six hundred years, that gates of brass might be put into their place, they did not show the slightest appearance of decay. In the island of Candia, where these trees grow in abundance, they are so valuable, that one of them is reckoned a daughter's portion.

The tree that produces the Indian rubber, or Caoutchouc, which was first introduced into Europe about the beginning of the last century, is a native of the West Indies. This substance is an elastic resin, of very singular properties, which is deposited by a liquor that oozes out from incisions cut in the bark of a tree called Jatropha elastica, Monoecia Monadelphia, and when fresh and pure is of a whitish colour; but it becomes brown by exposure to the air. A gum of the same kind is procured from several other trees; among which is the Jaca-tree, that I have already mentioned to you. The Indians make boots of Caoutchouc, which are water-proof, and, when smoked, look like leather: the inhabitants of Quito, in South America, prepare from it a kind of cloth, which they use as we do oil-cloth and sail-cloth; and in India, flambeaux are made of it, that burn without
a wick, and are used by fishermen when they go out at night to fish. Of late, a very ingenious application of it has been invented, by a gentleman of Glasgow, for making cloth water-proof. — The Caoutchouc is dissolved in Naphtha, a brownish liquor obtained in the process for making gas from coal, so as to form a varnish, with which the surface of thin cloth, or silk, or calico, is covered. This alone would be sufficient to prevent the rain from penetrating: but as the varnish is very glutinous, and would be inconvenient if it were exposed, it is covered up by a second thin cloth; and the whole being then passed between rollers, it is made quite smooth, and of equal thickness all through. I have seen water-proof cloaks made in this manner, of double calico, or silk, with Indian rubber between, that are lighter than a single cloth of the common kind such as you wear.

EDWARD.

But will not the rain melt away the Indian rubber from between the folds of cloth?

MOTHER.

No; because it cannot be dissolved in water; — indeed, there are few liquors besides Naphtha that will dissolve it.

The Castor oil plant, or Palma Christi, Ricinus *

* In this word the c is pronounced soft, like s.
commu'nis, and the Manchineel tree, Hippoma'ne Mancinel'la, belong to the order Monadelphia of this class.

The Tallow-tree, Stillin'gia sebi'era, Monoecia Monadelphia, is remarkable for the quantity and peculiar nature of the oil obtained from its berries; which so nearly resembles wax or spermaceti, that candles are made of it; but they produce a very disagreeable smell in burning. The tree is a native of China.—Castor oil is obtained from the seeds of the Ric'inus commu'nis, which are dried in the sun when ripe, pounded in wooden mortars, and then boiled in water. The oil rises to the surface of the water, and is skimmed off and put into jars for use. In this country it is employed only as a medicine; but in the West Indies the planters burn it in lamps, and apply it to various other purposes.—The seeds themselves of the Ric'inus commu'nis are an extremely powerful medicine.

The Manchineel is a very large West Indian tree, the wood of which is beautifully clouded, takes a fine polish, and is very durable. The Indians are said to poison their arrows with its juice, which is so very corrosive, that the woodcutters make a fire round the tree before they cut it down, to cause the juice to run out, and to avoid the danger of losing their sight by its flying into their eyes.
Besides these plants, the class Monoecia of Linnaeus contains some of the most valuable trees that grow in England, either originally natives, or introduced from foreign countries; among which are the Oak, the Firs, Beech, Birch, and Mulberry: and the genus Cucumis, which includes the Melon and the common Cucumber, with several other species, also belongs to it.

In the twenty-second class, Dioecia [Plate 2. fig. 22.], the stamens and pistils are in different flowers, and on separate plants; the orders in general depend upon the number of stamens.

This class, among other valuable species, contains the great Date-palm, the Pistachia-tree, Hemp, and the Nutmeg-tree; with several others that I have already mentioned to you among the native plants.

The genus Salix, or Willow, is a very numerous one; containing about sixty native species, and several foreign ones. On some trees, all the flowers contain stamens only, two in each flower; and on others a pistil only, with a divided summit, and a single seed-vessel close below. The flowers are collected, in both cases, into what are called Catkins, from their resemblance to the tail of a cat; each little flower having neither calyx nor petals, but being separated from the rest by a small scale. In the table of the classes [Plate 2. Class 22.] you will see two such catkins as I describe,
with a flower of each kind magnified. The common Osier, the twigs of which are so much used for making baskets and bird-cages, is a native species of *Sa'lix*, the *vim'inalis*. The Weeping Willow, *Sa'lix babyló'nic*a, is a native of Asia, and was brought into this country about fifty years ago.

The Date-palm, *Phce'nix dactylif'era*, is a native of the Levant: it grows from sixty to a hundred feet in height, with a cluster of leaves, like branches, eight or nine feet long, springing from the top, spreading all round like an umbrella, and bending towards the ground. The shape of the fruit is something like that of an acorn.—There is scarcely any part of the Date-tree that is not useful. It supplies the place of corn to the inhabitants of the countries where it grows, and furnishes them with almost the whole of their subsistence. Besides the fruit, they eat the young leaves; and of the old ones they make mats, and many other articles, with which they carry on a considerable trade. The tree, when wounded, affords a white juice, called by the natives the milk of the date; which has a sweet and agreeable taste, and is given to invalids as a refreshment: and even the stones of the fruit, though very hard, are not thrown away; for, when bruised or softened in water, they are given to sheep and camels as food.

The Pistachia-nut-tree, *Pista'cia Terebin'thus*, *Dioecia Pentandria*, grows naturally in Arabia,
Persia, and Syria, from whence the nuts are brought to Europe. I will show you some of them after dinner: they contain a kernel of a pale greenish colour, with a pleasant flavour. The Mas'tich-tree is another species of Pista'cia, the Lentis'cus: it affords the resinous substance called Mas'tich, which is sometimes employed in medicine, and in making varnish; the Turkish women use it to whiten their teeth.

You have often heard of Hemp, which is obtained from a plant that is cultivated in many parts of England, particularly in Lincolnshire and Suffolk, but is a native of India: the botanical name is Can'nabis sati'va, Dioecia Pentandria.

EDWARD.

Is it not hemp that ropes are made of?

MOTHER.

It is; and sail-cloth also; and the seeds yield a great quantity of oil. The whole plant, when fresh, has a disagreeable smell; and the water, in which the stalks are soaked, for the purpose of separating the tough rind or outer coating, becomes poisonous.

The Nutmeg-tree, Myris'tica moscha'ta, is very beautiful, and grows abundantly in the East Indies. The leaves have a very fragrant smell, as well as the fruit, which is about the size of a nectarine, and
consists of three coats:—the first a fleshy pulp; the second a coloured membrane, which is the spice called mace; and the third a shell, containing within it the nutmeg, which is the seed of the plant. In India, the nutmeg-fruit, preserved entire, is introduced with tea, but the pulp and mace only are eaten.

The plants of the twenty-third class, Polygamia [Plate 2. fig. 23.], bear flowers of three different kinds, with stamens only, or with pistils, or with both; and these grow either on the same plant, on two distinct ones, or on three. But several good botanists think this class unnecessary, since very few plants have these characters. The only species belonging to it, that I recollect, are the Plantain-tree, the Sensitive-plant, and the Fig.

The fruit of the Plantain-tree, Mu’sa paradisi’aca, is one of the greatest blessings the inhabitants of hot climates enjoy. It is cultivated in all the West Indian islands, where the plantains serve the negroes instead of bread. The tree rises with a soft stalk fifteen or twenty feet high; and the leaves, which are often eight feet long, come out from the top on every side. The fruit, or plantain, is about a foot long, and from three to six inches round; it has a tough skin; and, within, a soft pulp of a very sweet flavour, which is roasted and eaten. Every part of the tree is applied to some useful purpose in the West Indies.
The Sensitive-plant, Mimo'sa pudí'ca, which you have seen in the hot-house, is a native of Bra-
zil; and belongs to a genus, several species of which have the singular property of moving their leaves or branches when touched: but they do not move of themselves, like the Hedys'arum gy'rans.* Gum-
Ar'abic is procured from the Mimo'sa Nilot'ica, a tree that grows abundantly on the sandy soil of Arabia and Egypt, and several parts of Africa. The purest gum is brought to Cairo by the Arabs of the country round Mount Tor and Sinai, who convey it across the country, sewed up in bags of skin on the backs of camels.

The common Fig, Fi'cus Car'ica, is a native of the south of Europe. What we consider as the fruit, is called by Linnæus the receptacle, or common calyx, of the flowers; and he describes it as being top-shaped, fleshy, closed at the broad end, with several scales, and having the inside covered with little flowers, both perfect and imperfect, sometimes in the same fruit, and sometimes on different trees.—In most cases it is the flower that contains the young fruit; but in this plant the fruit encloses and conceals the flower.

It was a long time before it was known how the fig was propagated; and the history of this tree is so very curious, that at some future time you shall read an account of it.

* See page 200.
CONVERSATION THE EIGHTEENTH.

CLASS 24. CRYPTO'GAMIA. — ORDERS. — FERNS. — MOSSES; THEIR VARIOUS USES.—LI'CHENS.—REIN-DEER MOSS OR LI'CHEN. — SEA-WEEDS. — MUSH-ROOMS.

MOTHER.

The plants of the twenty-fourth class, Cryptogamia, are so very different from those of all the other classes, that the study of them might be considered as forming a distinct department of botany; and I do not recommend them to your particular attention, unless hereafter you wish to devote a large portion of your time to this subject. There are several books well calculated to assist your progress, whenever you are disposed to pursue it; and you will be equally astonished and pleased by the wonderful regularity and minuteness of the parts of these plants, and the beautiful contrivances of nature for their nourishment and distribution.

The character of this class consists, as I have already told you, in the plants that compose it
having flowers, of which the stamens and pistils are either not well ascertained, or not to be numbered with certainty; so that they cannot be referred to any of the preceding classes.*

The orders into which the class is now divided are five; consisting of tribes quite different from each other in their characters and appearance.

The first is called Fil'ices, or Ferns; the second, Mus'ci, or Mosses, includes a great many genera and species; the third, Hepat'icæ, or Liverworts, consists of genera bearing some resemblance to the mosses; the fourth, called Al'gae, comprehends the Lichens and Sea-weeds; and the fifth, Fun'gi, contains all the Mushrooms and Funguses. Withering, and some other botanists, have another order besides, which they call Miscellaneous, including plants that are not easily referred to any of the tribes I have just mentioned. The drawing that I have made for you [Plate 22.] is intended merely to show the general appearance of some of the most common cryptogamic genera, in each order.

The Ferns, in general, have what is called their fruit disposed in spots or lines upon the under side of the leaves; and the genera are distinguished, principally, by the shape and structure of these spots. They are a beautiful tribe; but

Class XXIV. CRYPTOGRAMIA.

Published: July 1874, by Longman & Co.
the uses to which they are applied are not very numerous.

Several of our common kinds of fern are employed as firing by the poorer classes of people; who also mix the ashes with water, and form them into balls, which they dry in the sun, and use instead of soap for washing their linen.

The leaves of most of the species, if cut when fully grown and properly dried, make a thatch for houses more durable than any sort of straw; and the root of one kind, called the Flowering Fern, Osmun'da rega'lis, when boiled in water, is employed in the north of Europe, like starch, to stiffen linen.

Humboldt tells us, that at Santa Maria, one of the Azores, almost all the plants of the fern tribe assume the form and size of trees. In the time of Linnaeus, botanists were acquainted with only four of these arborescent species; but five new ones have been discovered in Santa Maria alone.

In South America, also, some ferns, not unlike our common Brakes or Polypody, Pte'ris aquili'na, grow to such a size, that they may be compared to trees; and at the southern extremity of Van Diemen's Island a species has been found, whose trunk had attained a height of from twelve to sixteen feet: it is remarkable that no fern of this description has been discovered beyond the northern tropic. There is one species found in North Ame-
rica, called the Sensitive Fern, Onoclea sensibilis, which is said to wither immediately on being touched by the human hand, but to endure the touch of other bodies without injury. Sprengel, a German botanist, asserts that he repeated this experiment several times, and always with the same effect.

The Mosses, which form the second order of the class Cryptogamia, have roots and leaves something like those of other plants; but the fruit is very different. Small threads, like the filaments of stamens, generally grow out of the bosom of the leaves, and support little roundish bodies, that resemble anthers, but which are really the capsules that contain the seeds. These capsules are hollow, of various figures, and in general furnished with what is called a Calyptra, or Veil, like a little extinguisher; and when this is removed, the mouth of the capsule itself, which sometimes has a Lid besides, is found to be surrounded with one or two rows of fringe, of great delicacy, and of surprising regularity in the number of the teeth that compose it. The genera of mosses are founded chiefly upon the situation of the capsule, and some other circumstances: among which the structure of the fringe at the mouth is the most important. The form of the leaves of mosses is extremely simple: they are all destitute of leaf-stalks, and are never either winged or divided.
Mosses are generally perennial and evergreen, and capable of growing in much colder climates and situations than most other vegetables. I have heard, that in the dreary country of Spitzbergen, the rocks, which rise out of everlasting masses of ice, are thickly clothed with mosses; and a botanist named Crantz, who travelled in Greenland, counted above twenty different species, without moving from a rock where he was seated.—They possess the singular property of reviving when moistened, after having become very dry and to all appearance withered; and even after they have been gathered and kept in a dry state for many years, if put into water, every part of them will expand, and become apparently as fresh as when they were growing. They overspread the trunks and roots of trees, and in winter defend them against frost: in wet weather they preserve them from decay; and, during the greatest drought, provide them with moisture, and protect them from the burning heat of the sun. It has been observed, too, that mosses grow chiefly on the northern side of the trunks and branches of trees, as if to shelter them from the cold north wind.

The poor Laplanders derive several of their comforts from the mosses. Of the Golden Maiden-hair, Polyt'richum commu'ne, one of the largest
species belonging to this tribe, they form excellent beds, by cutting thick layers of it, one of which serves as a mattrass, and the other as a coverlet; and Linnaeus tells us, that he himself often made use of such a bed, when he was travelling in Lapland. These mossy cushions are very elastic; so that a bed may be rolled up into a parcel small enough to be carried under a man's arm, and the inhabitants can easily take them about with them in their journeys. They do not grow hard by pressure; and when they lose a part of their elasticity by long use, it can soon be restored by dipping them in water.

The Lapland women make great use of the grey Bog-moss, Sphagnum palustre, which is particularly soft, like a thick fur or fleece. They wrap their infants up in it without any other clothing, and place them in leathern cradles, lined with the moss; and in these soft and warm nests the little babies are completely defended from the cold. The Greenlanders use this moss as tinder, and for wicks to their lamps.

There is a plant of another genus in this class, Lycopodium clavatum, which, though not belonging to the same order, is called Club-moss: the seeds of it are collected and sold in various parts of Europe, for the purpose of producing the appearance of lightning on the stage at theatres; for
being very light and combustible, they take fire very quickly, and with a sort of hissing noise, while floating in the air.

The structure of the mosses is so beautiful, that they are objects of the greatest interest and admiration, to all who understand them. Mungo Park, a traveller celebrated for his fortitude and courage, who ventured alone into the midst of the great unknown countries of Africa, wrote an account of his journey that will give you pleasure at some future time; and I will now read you a part of it:—"I found myself in the midst of a vast wilderness, naked and alone, surrounded by savage animals, and by men still more savage. I was five hundred miles from the nearest European settlement; I considered my fate as certain, and that I had no alternative but to lie down and perish. At this moment, the extraordinary beauty of a small moss irresistibly caught my eye; and though the whole plant was not larger than the top of one of my fingers, I could not contemplate the delicate conformation of its roots, leaves, and capsules, without admiration. Can that Being, thought I, who planted, watered, and brought to perfection, in this obscure part of the world, a thing which appears of so small importance, look with unconcern upon the situation and sufferings of creatures formed after his own image?"—Reflections like these would not allow me to
"despair: I started up, and, disregarding both hunger and fatigue, travelled forwards, assured that relief was at hand; and I was not disappointed."

EDWARD.

And did he ever come home?

MOTHER.

He did, my dear; but he went out again to Africa, to make new discoveries, and was killed by some of the natives.

The Hepat'icæ, or Liverworts, form the next order of Cryptogamic plants: they are a tribe of small herbaceous plants resembling the mosses; the name is derived from a Greek word signifying the liver, perhaps because some of them were formerly employed to cure diseases of the liver, or from their supposed resemblance to the lobes or divisions of the liver.

The Al'gæ consist of plants, some of which are formed of a mere crust, others of a leathery or jelly-like substance; and there are two principal divisions,—the Lichens, and the Aquatic, or Submersed Al'gae, some of which abound in fresh water, others in the sea. The latter are commonly called Sea-weeds; and the genera, in both divisions of the order, are distinguished, either by the situation of what is supposed to be the flower or seed,
or by the resemblance of the whole plant to some other well-known substance.

The nearer we approach either to the north or south pole, the more we find the earth abound with lichens and liverworts; and in advancing towards the equator, the class of plants next in abundance are the mosses; and then the grasses.

Lichens commonly grow in fleshy or leather-like patches, on the stems of trees, rocks, old buildings, palings, and other solid bodies.

EDWARD.

Are those lichens, that grow, like rough yellow and bluish crusts, upon the old gooseberry-bushes and apple-trees in the garden? I think your drawing is like them.

MOTHER.

They are some of the most common species. — Lichens, as well as mosses, are found to thrive in all kinds of soil, and in every climate; and, like mosses, they have the property of growing again, when placed in situations adapted to them, though they may have been kept in a dry state for many years. They are not destroyed either by heat or severe cold, and are found growing where no other vegetation is to be seen.

One species of this tribe of plants, the Lichen rangiferinus, or Rein-deer Moss, is the most use-
ful vegetable that grows throughout the whole of Lapland; for it is the principal food of the reindeer, without which valuable creature the inhabitants of that miserable country could scarcely exist. The reindeer draws them in sledges over countries buried in snow; its flesh and milk afford them nourishment, its skin clothing, and even its bones and sinews are made into several useful articles.

The Rein-deer Lichen, or Rein-deer Moss as it is sometimes called, is of a whitish colour, and grows in Lapland to the height of at least a foot, covering the ground like snow; but in this country, where it is found in some mountainous situations, it seldom attains the height of six inches.

The inhabitants of Iceland find another species of lichen, called Iceland-moss, Lichen Islandicus, which grows abundantly in that country, highly serviceable: they make use of it as food in various ways, and consider it as very nourishing.

Several different species of lichen afford beautiful dyes; and one of them, called Dyer’s Lichen, or Orchall, Lichen roccel’la, is particularly valuable, from its communicating to wool and silk various shades of purple and crimson. This plant, which is brought chiefly from the Archipelago and the Canary Islands, is of great importance as an article of commerce; and, when scarce, has been sold for even a thousand pounds a ton.

The purple powder, called Cudbear, that is used
in dyeing purple, is prepared from the Lichen tarta'reus, which is common in many parts of England; but it can be used only for dyeing woollen cloth, as it does not communicate its colour to vegetable substances.

The Aquatic Algae, including the Sea-weeds, imbibe all their nourishment through their surface, the roots serving only to fasten them to the bottom; and many of them float about in the water, without being attached to any solid body. They constitute a very large tribe.

Some of the Sea-weeds are used as food; and all are of great importance to farmers on the sea-coast, for manuring their land. In the islands of Jura and Skye, the Bladder-fu'cus, or Sea-wrack, Fu'cus vesiculossus, often serves as winter food for the cattle, which regularly go down to the shores, when the tide is out, to eat it; and even the deer have been observed to come from the mountains, to feed upon this plant. Linnæus says, that the inhabitants of Gothland in Sweden boil this fu'cus in water, and feed their hogs with it, mixed with meal: in Scandinavia, the poor people thatch their cottages with it. But one of the most important purposes to which this sea-weed is applied, in common with many other species, is the preparation of Kelp, a kind of salt, which is a principal ingredient in the manufacture of soap.

If the leaves of this plant receive a wound, while
growing, abundance of young shoots are thrown out from the injured part; and even if a hole or rent be made in the middle of a leaf, a new one will spring from each side of it.

In Scotland, the Sea-tangle, *Fu'cus digitatus*, as well as the Dulse, *Fu'cus palmatus*, is employed as food; and the stems of the former plant are sometimes used for making handles of knives. For this purpose a thick stem is chosen, and cut into pieces about four inches long; the hilts of the knives are stuck into these while fresh, and, as the stem dries, it contracts and hardens firmly around them. These handles, when tipped with metal, can scarcely be distinguished from horn. The large stalks of the plant are dried, and used as fuel, in the Orkney and Shetland Islands.

The size that some of the larger kinds of sea-weeds attain, and the rapidity of their growth, are truly wonderful. The Gigantic *Fu'cus*, *Fu'cus giganteus*, is said to extend often to the length of a thousand or fifteen hundred feet; and it grows in such profusion, that the masses of it resemble islands. In the Atlantic, Pacific, and Indian Oceans, there are vast tracts of sea-weeds; one of which has been called by navigators the Grassy-sea, from its great extent. The entire surface in such places is literally covered with these plants; and ships on their voyages are several days in passing through them.
The *Fu'cus* te'nax is employed in China as glue and gum-arabic are with us: when washed and steeped in warm water it dissolves, and as it cools, stiffens into a glue, with which large sheets of paper are coated, in order to make them transparent; and these are used, instead of glass, for lanterns and windows. In China, too, windows are sometimes made of slips of bamboo, which are crossed, and the spaces between are filled up with thin sheets of this glue alone.

The *Fu'cus* lichenöi'des is in high estimation in the East Indies, particularly at Ceylon, as a luxury for the table. — You will be surprised to hear that the nests of a kind of swallow are eaten as a delicacy in China, and throughout the East, and even imported to London. These nests, it is supposed, are made by the birds almost entirely of the *Fu'cus* lichenöi'des.

The little branch of sea-weed that I have sketched for you [Plate 22.], does not resemble any of the kinds which I have been speaking of. It is a species of the genus Confer'va; and I have drawn it merely to give you an idea of the difference between Aquatic Al'gae and Li'chens, which form the two divisions of the order Algæ. Several species of Confer'va are found to be very beautiful and curious, when examined with a magnifying glass.

What is called the dry-rot in wood is a decay
supposed to be occasioned by a peculiar kind of plant, Bys'sus sep'tica, belonging to this order. Though of so light a texture that the breath will disperse it like the finest wool, this little plant remains long in its native situation, and in time destroys the hardest wood.

The Fungi are a very singular tribe: they have, properly, no leaves; their whole substance being fleshy, generally of quick growth and short duration, and of various degrees of firmness, from a watery pulp to a leathery or even woody texture. Several of the species are poisonous.

The only kind of fungus that we venture to eat is the Agar'icus campes'tris, or common Mushroom; which is often cultivated in hot-beds, and grows wild in parks and fields, that have been undisturbed by ploughing for many years together. The most splendid of all the mushrooms, Agar'i-cus xerampeli'nus, is common in Italy, and is brought to the markets there for sale as food; but it is very rarely found in England. It is of a beautiful red and orange colour. But the Agar'i-cus delicio'sus, which also grows in Italy, and has been found in England, is of much superior flavour, and was highly prized as a luxury by the ancient Romans.

In Lapland, Linnæus saw the Boletus igni-a'rius, another kind of mushroom, which is shaped like a horse's hoof, hung up on the walls of the
cottages, and used as a pincushion. It is made use of also as a tinder in some parts of England and Germany.

I have now told you, my dear Edward, all that I intended to mention about Botany; and I hope that what you have already learned will enable you to make use of books upon this interesting subject, without my assistance. I shall be very much gratified, if your desire to pursue it is at all increased by any thing that I have said.
EXPLANATION

OF

THE BOTANICAL TERMS

MADE USE OF IN THIS VOLUME.

Aggregate; a term applied to flowers which consist of several florets placed upon one receptacle, and included within one common calyx, but in which the anthers are not united; as Scabius and Teasel, in the class Tetrandria.

Alternate, branches, leaves, or flowers; — coming out regularly one above another, but on different sides; not opposite.

Angiosper'mia; the name of one of the orders of the class Didynamia; in which the seeds are enclosed in a seed-vessel.

Annual, plants or roots; living only one year.

An'ther; the uppermost part of a Stamen, fixed upon the top of the filament, and containing the Pollen. [Plate 1.]

Arbores'cent, stem; — distinguished from herbaceous, — becoming woody.

Arrow-shaped; like the head of an arrow: as the leaves of common Sorrel, or the anther of the Crocus. [Plate 5.]

Awl-shaped; slender, and becoming fine towards the m 3
end, like an awl; as the filaments of the flowering Rush. [Plate 11.]

Awn; a slender, stiff, sharp substance, growing from the husks of some grasses and other flowers; as in Oats, Barley, and Teasel.

B

Bark; the outermost covering of the roots, stems, and branches of vegetables. It is generally divided into three parts; the Cuticle or skin, the Outer, and the Inner bark.

Berry; a pulpy seed-vessel, without valves, in which the seeds are surrounded with the pulp: as in the Gooseberry, and common Holly. [Plate 7.]

Biennial; living two years, and then perishing. In biennial plants, a root and leaves are formed during the first year, and the flower and fruit are completed in the second.

Blossom, or Corolla; that part of a flower which, in general, is coloured, and consists of one or more petals. [Plate 1.]

Border; the upper spreading part of a blossom of one petal: as in Germander Speedwell. [Plate 3.]

Bristles; strong, stiff, roundish hairs.

Bulb; Bulbous-root; } the part, commonly round and fleshy, from which the stem of some plants arises, and which sends down fibres into the ground. — The fibres are the true root. A bulbous-root is either Solid, as in the Crocus and Snowdrop, [Plates 5. and 9.], — Coated, as in the Onion, — or Scaly, as in the Lily.
BULGING; swelling out irregularly: as the two outer leaves in the calyx of the Wall-flower. [Plates 1. and 17.]

BUNCH; a fruit-stalk, or flower-stalk, furnished with short branches at the sides. White and red Currants grow in bunches; as also the flowers of Germander Speedwell. [Plate 3.]

C

CADU’COUS, from cada, to fall; falling off quickly. In the Poppy the calyx is caducous. This term is also applied to stipules, leaves, and petals.

CA’LYX; that part of a flower which, in general, grows close under the corolla. [Plate 1.] There are seven different kinds of calyx; but the following only are mentioned in this volume, viz.—

A Cup, as in Corn-cockle and Ground Ivy. [Plates 12. and 16.]
An Involu’crum, as in the Flowering Rush. [Plate 9.]
A Catkin, as in the Willow. [Plate 2. Class Dioecia.]
A Sheath, as in the Crocus and Snowdrop. [Plates 5. and 9.]
A Veil, as in the Mosses. [Plate 22.]

CAPSULE; a dry hollow seed-vessel, which opens naturally, when the seeds are ripe, to let them out: as in the Poppy. [Plate 15.]

CATKIN; a composition of flowers and chaff, upon a long, slender, thread-shaped receptacle; the whole
resembling the tail of a cat: as in the common Willow. [Plate 2. Class Dioecia.]

Cell; a hollow space in a seed-vessel, particularly in a capsule, for holding the seed.

Centre florets; those which occupy the middle part of a compound flower: as the yellow ones in the Daisy. [Plate 21.]—See Floret.

Circumference; the outward line, or boundary, of a circle. The word is used, in speaking of compound flowers, to express the florets which are farthest from the centre; as the white ones, that surround the yellow florets, in the Daisy. [Plate 21.]

Claw; the lower part of the petal, which stands within the calyx, in a polypetalous flower: as in Wall-flower and Corn-cockle [Plates 1. and 12.]

Climbers; plants which are weak, and require the support of some other body to raise themselves upon: as Ivy, Vine, &c. Climbers do not twine round the bodies to which they are attached.

Cloven; divided or split, the edges of the divisions being straight: as the summit of the pistil in Ground Ivy. [Plate 16.]—See Notched.

Coated; composed of layers, one over another; like an Onion.

Coloured; of any other colour than green. The calyx is sometimes coloured.

Common, applied to the calyx; containing several blossoms: as in plants of the class Syngenesia, Dandelion, Thistle, Daisy, &c. [Plate 21.]

Compound; a term applied to the flowers of the class Syngenesia; which consist of many florets, or little flowers, placed upon one receptacle, and included
within one common calyx;—each floret having the anthers united: as the Daisy. [Plate 21.]

Compressed; flattened on the sides.

Cone, or Strobile; a solid body shaped like a sugar-loaf.—The fruit of the Fir, and of several other trees, is called a cone, because it has this shape.

Conical; shaped like a cone or sugar-loaf; as the receptacle of the Daisy. [Plate 21.]

Corolla, or Blossom.—See Blossom.

Cotyledon; a seed-lobe, destined to nourish the heart of the seed, and then to perish.

Creeping; extending itself along or under the ground, and putting forth roots of fibres; applying to stems and roots.

Cross-shaped flowers, are those which have four equal petals, spreading out in the form of a cross; as the Wall-flower. [Plates 1. and 17.]

Cru-ciform; cross-shaped

Cryptogamia; the name given by Linnaeus to the twenty-fourth class: stamens and pistils not visible to the naked eye, or not ascertained. [Plates 2. and 22.]

Cup; a kind of calyx, so called because it is commonly shaped like a cup. It is either of one leaf, as in Mouse-ear and Corn-cockle [Plates 8. and 12.]; or formed of several leaves, as in Wall-flower [Plates 1. and 17.]: and is sometimes double, as in Mallow. [Plate 18.] And it contains either one flower, as in the examples above mentioned,—or several, as in the Daisy. [Plate 21.]

D

Decandria; the name of the tenth class: ten stamens in each flower. [Plates 2. and 12.] Also the name
of an order in the classes Monadelphia, Diadelphia, and Polyadelphia. [Plate 19.]

Deciduous, leaf; falling off in the autumn. This term is also applied to the calyx, corolla, legumen, and stipula.

Decumbent, applied to the stalk; lying upon, or near the ground.

Diadelphia; the name of the seventeenth class: filaments united in two sets; flowers butterfly-shaped. [Plates 2. and 19.]

Dianthria; the name of the second class: two stamens in each flower. [Plates 2. and 3.]—Also the name of an order, in the classes Gynandria, Monoecia and Dioecia.

Didynamia; the name of the fourteenth class: four stamens in each flower; two of them long, and two short. [Plates 2. and 16.]

Digynia; the name of one of the orders in each of the first thirteen classes, except the ninth and twelfth;—two pistils in each flower. [Plate 6.]

Dioecia; the name of the twenty-second class: the flowers which contain stamens growing on distinct plants from those with pistils. [Plate 2.]—Also the name of one of the orders in the class Polygamia.

Diphyllous, calyx; two-leaved: as in the Poppy. [Plate 15.]

Dodecagynia; the name of one of the orders in the eleventh class: twelve, to eighteen or twenty pistils in each flower. [Plate 13.]

Dodecanthria; the name of the eleventh class: from eleven to nineteen stamens in each flower. [Plates 2. and 13.]
DOUBLE; — a flower is commonly so called, when the petals exceed the usual number, while some of the stamens remain. See Full.

DOUBLE CALYX; one calyx within another: as in the Mallow. [Plate 18.]

DOWN; the fine hair, or feather-like substance, with which the seeds of some plants are furnished: as in Dandelion and several other compound flowers. [Wood-cut, page 210.]

E

ENNEANDRIA; the name of the ninth class: nine stamens in each flower. [Plates 2. and 9.] — And also of one of the orders in the classes Monadelphia and Dioecia.

EVERGREEN; bearing green leaves throughout all seasons of the year: as common Holly. [Plate 7.]

F

FARINA, or Pollen. — See Pollen.

FEATHERED; applied to hair, bristles, or down having smaller hairs growing on the sides. The down of seeds sometimes consists of simple hairs: sometimes it is feathered, — as in Dandelion. [Wood-cut, page 210.]

Ferns, Fil'ices; the name of a natural tribe of plants, which form one of the orders of the class Cryptogamia. [Plates 2. and 22.]

Fil'AMENT; that part of a stamen which supports the anther. [Plate 1.]

Fil'ICES; Ferns.
Fleshy; of a consistence more solid than pulp: as the fruit of the Apple, the root of the Turnip, and the leaves of some plants. The soft part of a Cherry or Gooseberry is called pulpy.

Flo'ret; a little flower, one of those which form a compound flower: as in the Daisy. [Plate 20.]

Flower; that part of a plant which produces the seed.

Fruit; the seed or seeds, with their seed-vessel;— but the seed is the essential part.

Fruit-stalk; a stem or branch bearing fruit or flowers, but not leaves. [Plates 3. 11. &c.]

Full; this term is applied to flowers commonly called double, when by richness of soil, or other causes, all the stamens have been changed into petals. Full flowers cannot produce seeds.

Fun'gi; the name of one of the orders in the class Cryptogamia; including the Funguses, Mushrooms. [Plate 22.]

Funnel-shaped; applied to a blossom of one petal, in which the lower part is like a tube, and the upper like a cup: as in Mezereon. [Plate 10.]

G

Gaping; a term applied to the blossoms of several plants, in the class Didynamia, from their resemblance to an open mouth: as Ground Ivy. [Plate 16.]

Gelat'ious; like jelly.

Gen'era; the plural of the word genus.

Ge'nuus; one of the subdivisions in the systematical arrangement of plants; containing those, of the
same classes and orders, which agree in their flowers and fruit.

Germen: the lower part of a pistil. — It is the young fruit, scarcely formed; and becomes afterwards the Seed-vessel. [Plate 1.] — The germen is sometimes placed below the calyx and corolla, sometimes above or within them. See *Inferior*, and *Superior*.

Glands: solid bodies, which afford a peculiar fluid: differently situated in different plants. In the Wallflower [Plate 1.], they are placed at the foot of the shorter stamens.

Gramîna; a natural family of plants; comprehending those in the order Digynia, of the class Triandria.

Grinning, or *Ringent*. — See *Ringent*.

Gymnosper'mia; the name of one of the orders of the class Didynamia: in which the seeds have no covering: as in Ground Ivy. [Plate 16.]

Gynan'dria; the name of the twentieth class: stamens growing upon the pistils. The flowers of this class have a very peculiar structure; as in the Orchises. [Plate 2.]

H

Heads of flowers: — when several flowers grow thickly together in a kind of ball, they are said to form Heads; as in the common red and white Clover, and the Bird's-foot Clover [Plate 19.], Clothiers' Teasel (p. 48.).

Heart-shaped: a term applied to some leaves and petals, from their resemblance to the shape of a
heart.—When the narrow end is next the stem, the term is 'Inversely heart-shaped:' as the petals of the Mallow. [Plate 18.]

HEPTAGYN'TIA; the name of one of the orders in the seventh class.

HEPTAN'DRIA; the name of the seventh class: seven stamens in each flower. [See Plate 2.]

HERB; or HERBA'CEOUS PLANT; terms opposed to woody, and applied to plants which are succulent and tender.—The Mouse-ear, and common garden Pea, are herbs; the stem of the Wall-flower is somewhat woody: the Mezereon is a shrub; the Ash, Oak, &c. are trees.

HEXAGYN'TIA; the name of one of the orders in the sixth, ninth, and thirteenth classes; in which every flower has six pistils. [Plate 11.]

HEXAN'DRIA; the name of the sixth class: six stamens in each flower. [Plates 2. and 9.]

HUSK; the calyx and blossom of the Grasses are called husks: they are thin and dry, like chaff; consisting of one or more leaves, called Valves, with or without awns; and containing the grain or seed. [Plate 6.]

ICOSAN'DRIA; the name of the twelfth class: twenty stamens or more, fixed to the calyx. [Plates 2. and 14.]

IMPERFECT FLOWER; wanting either stamens or pistils, or both; as in the classes Monoecia and Dioecia. [Plate 2.] In the Daisy the florets of the border are imperfect; having no stamens. [Plate 21.] —
A flower that wants the calyx or corolla, is not called Imperfect, but Incomplete; as the Mezereon. [Plate 10.]

Inferior; applied, principally, to the germen, when it is placed below the cup: as in the Snowdrop. [Plate 9.]

Involu'crum; a sort of calyx distant from the corolla; exemplified principally, but not exclusively, in umbelliferous plants. In the Flowering Rush the calyx is an involucrum. [Plate 11.]

Jointed stem; having knots, or joints: like the straw of Wheat, &c. [Plate 6.]

Keel; the lowermost petal in a butterfly-shaped blossom; so called from its resemblance to the keel of a boat. [Plate 19.]

Knots; the joints of the stem of Grasses and Reeds. [Plate 6.]

La'biate, or Lipped; applied to a corolla of an irregular figure, with two lips: as in several flowers of the class Didynamia. [Plate 16.]

Leafit, or Leaflet; one of the smaller leaves, in a leaf composed of many: as in the Dog-Rose. [Plate 14.]

Leaf-stalk; the stalk which supports a leaf, but not a flower.

Legumen; a seed-vessel of two valves, in which the seeds are fixed to one seam only: as in the common Pea. [Wood-cut, page 194.]
Explanations of Leguminous plants; those in which the seed-vessel is a legumen. [Plate 19.]
Lid; the cover of the capsule in several of the Mosses. [Plate 22.]
Lips; the upper and under divisions of a Labiate or Gaping blossom. [Plate 16.]

M

Monadelphia; the name of the sixteenth class: all the filaments united in a tube round the pistil. [Plates 2 and 18.]
Monandria; the name of the first class: one stamen in each flower. [Plates 2 and 3.]
Monoechia; the name of the twenty-first class: stamens and pistils in separate flowers, but on the same plant. [Plate 2.]—Also the name of one of the orders in the twenty-third class, Polygamia, of Linnaeus.
Monogynia; the name of the first order in each of the first thirteen classes: one pistil in each flower. [Plates 3, 5, 8, 9, 10, 15.]
Monopetalous; a blossom is so called, when it is composed of only one petal: as in Germander Speedwell [Plate 3.], Crocus [Plate 5.], Mezereon [Plate 10.], Ground Ivy [Plate 16.].
Monophylous; a calyx is so called when it is composed of one piece; the calyx of the Primrose and of the Corn-cockle are good examples. [Plate 12.]
Mosses, Musci; a natural tribe of plants, forming one of the orders in the class Cryptogamia. [Plate 22.]
Mouth; the opening of the tube, in blossoms composed of one petal: as in Mouse-ear [Plate 8.], and Ground Ivy [Plate 16.].
Musci; Mosses. [Plate 22.]

Mushrooms, Fungi; the name of a natural tribe of plants, forming one of the orders in the class Cryptogamia. [Plate 22.]

Names. The botanical names of plants in universal use at present, are, in every case, two;—the Generic, which applies to all those of the same Genus; and what is called the Trivial name, which is confined to those of one Species only. Whenever a third name occurs, it denotes a Variety.—Thus, Geranium malvifolium-pusillum signifies a very small variety of the Geranium malvifolium, or mallow-leaved Geranium. — See Specific, and Trivial.

Natural order, or class; an assemblage of several genera of plants, which agree in their general appearance and qualities: as the Umbelliferous and Leguminous tribes, the Grasses, &c.

Nectary; a part of a flower, in which honey is supposed to be formed or contained; of various forms in different flowers. The Nectary in the Wallflower is a distinct gland, but it is not conspicuous. See pp. 8, 83, 84. [Plate 1.]

Nodding; a term applied to a flower when the stalk is bent down near the end: as in the Daffodil, Hyacinth, and Snowdrop. [Plate 8.]

Notched, at the end or sides; having angular incisions, but not so deep as when cloven: like the summits of the pistils in the Flowering Rush. [Plate 11.]
Nut; a seed enclosed in a hard woody shell: as the common Hazel-nut; and the kernel or stone of the Peach, Plum, and Cherry, &c.

O

Octan'dria; the name of the eighth class: eight stamens in each flower. [Plates 2. and 10.]

Opposite, leaves or branches; growing in pairs, from the same part of the stem, but on opposite sides. [Plate 3.]

P

Papilionâ'ceous; Butterfly-shaped: some blossoms are so called from their resemblance to a butterfly, in Latin Papil'io. The term is applied to plants of the class Diadelphia. [Plates 2. and 19.]

Parasitical; growing upon some other plant, but not in the ground: as Miseltoe.

Pentagyn'Tia; the name of one of the orders in the classes Pentandria, Decandria, Dodecandria, Icos-andria, and Polyandria; five pistils in each flower. [Plate 12.]

Penta'n'dria; the name of the fifth class: five stamens in each flower. [Plates 2. and 8.]

Perennial; lasting for many years, or at least more than two.

Perfect flower; having both stamens and pistils.—See Imperfect.

Permanent; applied principally to the calyx;—remaining on the plant after the fruit is ripe: as in the Mouse-ear [Plate 8.] and Ground Ivy [Plate 16.].
PET'ALS; the leaves which form the blossom, or corolla, of a flower. They are generally coloured. [Plate 1.]

PILLAR; a little shaft, or stem, supporting part of the down of some seeds: as in Dandelion. [Wood-cut, page 210.] The term is applied also to the receptacle, around which the capsules are placed, in the Mallow. [Plate 18.]

PISTIL; part of a flower;—composed of the Germe, Style, and Summit. [Plate 1.]

PITH; a soft spongy substance, which occupies the middle, or clothes the inner surface, of the hollow trunk of some plants; as in the Rush and Elder.

PLU'MULA; the plume, or ascending part of the corculum or heart of the seed.

POD; a seed-vessel, composed of two valves or shells; with a partition, upon which the seeds are placed, being fixed, alternately, to each of the seams or sides. [Plates 1. and 17. and Wood-cut, page 194.]

POL'LEN, or Fari'na; a fine powder contained in the anthers of flowers.

POLYADEL'PHIA; the name of the eighteenth class: stamens united, by the filaments, in three or more sets. [Plates 2. and 20.]

POLYAN'DRIA; the name of the thirteenth class: more than twenty stamens, fixed to the receptacle. [Plates 2. and 15.] Also the name of an order in the classes Monadelphia, Diadelphia, and Polyadelphia. [Plates 18. and 20.]

POLYGA'MIA; the name of the twenty-third class of Linnaeus: three different sorts of flowers on the
same, or on separate plants; some of them containing pistils, some stamens, and others both. [Plate 2.]

The term is applied also to each of the orders of the class Syngenesia; and signifies that several florets are enclosed within one common calyx: the five orders being named as follows, viz.—

1. **Polyga’mia Equa’lis**; all the flowers furnished with both stamens and pistils.

2. ——— **Super’flua**; florets of the centre having both stamens and pistils, those of the circumference pistils only. The common Daisy [Plate 21.] is an example of this order.

3. ——— **Frustra’nea**; florets of the centre having both stamens and pistils, those of the circumference neither.

4. ——— **Necessa’ria**; florets of the centre having stamens and pistils, without seeds; those of the circumference pistils only, with seeds.

5. ——— **Segrega’ta**; several florets enclosed within one common calyx; each having, besides, a separate cup of its own.

Polygyn’ia; the name of one of the orders in the classes Pentandria, Hexandria, Icosandria, and Polyandria. [Plate 14.]

Polypet’alous, corolla or flower; having more than one petal: as the Rose or the Poppy. [Plates 14. and 15.]

Polyphyll’ous, calyx; many-leaved.

Prickles; sharp points growing from the bark, only, of a plant, and coming off along with it: as in the Rose [Plate 14.], and Bramble. Thorns grow from the wood. [Plate 22.]
BOTANICAL TERMS.

Procumbent; lying on the ground, but without putting forth roots.

Pulpy; softer than fleshy: applied to fruit, as in the Gooseberry and Currant, and sometimes to leaves. A Cherry is pulpy, but an Apple is fleshy.

R

Radicle; a root-leaf proceeding immediately from the root.

Receptacle; the seat, or base, upon which all the other parts of a flower are placed, and by which they are connected. It is remarkable in the Artichoke, but in some flowers is not conspicuous. [Plate 1.]

Rin'gent, or Grinning; a term applied to the corolla of several flowers of the class Didynamia; in which the border is divided into two parts, called Lips, and is supposed to resemble an open mouth: as in Ground Ivy. [Plate 16.] When the lips are closed, the flower is called Personate.

Root; that part of a plant which grows in the earth, and supplies the rest with nourishment. It may be Fibrous; Bulbous; or Tuberous, as in the Potatoe.

S

Sap; the juice of plants.

Scaly; composed of scales lying one over another, like those in the skin of a fish: as the bulb of a Lily, the cup of a Thistle, &c.

Seam; the line formed by the meeting of the valves in a seed-vessel. The legumen of a Pea is of two valves; and all the seeds are fastened to one of the seams. [Wood-cut, page 194.]
EXPLANATION OF

SEED-VESSEL; a vessel or case containing the seeds. Seed Vessels are of the following kinds, viz.—

A CAPSULE; as in the Poppy. [Plate 15.]
A Pod; as in the Wall-flower. [Plate 1. and Woodcut, page 194.]
A Legu'men; as in the Bird's-foot Clover. [Plate 19. and Wood-cut, page 194.]
A Berry; as in the Holly [Plate 7.], and in the Rose. [Plate 14.]
A Cone; as in the Fir.
A Dru'pa,—enclosing a nut; as in the Cherry and Peach.
A Pomum; as in the Apple.

SEGMENTS; the divisions—of leaves, cups, or blossoms, &c.

Sessile.—See SITTING.

Sheath; a kind of calyx; composed of a thin skinny leaf: as in the Crocus and Snowdrop. [Plates 5. and 9.]

SHRUB; a term commonly applied to plants with a perennial woody stem, divided, near the ground, into branches. Mezereon is a shrub.

Silic'ula; a short broad pod.

Siliculo'sa; the name of one of the orders of the class Tetradymania; in which the seed-vessel is a Silicula.

Sil'iqua; a long narrow pod. [Plates 1. and 17. and Wood-cut, page 194.]

Siliquo'sa; the name of one of the orders of the class Tetradymania; in which the seed-vessel is a Siliqua. [Plates 1. and 17.]

Simple; applied to the stem or stalk, means undivided.
SITTING, or Sessile, leaves or flowers; joined immediately to the stem, without leaf-stalks or fruit-stalks: as the leaves of the Germander Speedwell [Plate 3.], and the flowers of the Mezereon. [Plate 10.] The term is applied also to the down of seeds, when there is no pillar, or stalk, between it and the seed. [Wood-cut, page 210.]

Skinny; like skin, or gold-beaters' leaf; thin, tough, and transparent.

Solitary;—flowers, seeds, or leaves, are so called, when only one grows upon the same part of a plant.

Spear-shaped; shaped like the head of a spear: as the leaves of the Mouse-ear. [Plate 8.]

Species; a set of plants, which agree in the general structure of their flowers and fruit, and therefore belong to the same Genus, but differ in their stem, leaves, and other particulars.

Specific name; Linnaeus used these words in a different sense from that which is now frequently connected with them. His specific names were, in fact, brief enumerations of the essential differences of the species, derived from the number, figure, situation, and proportion of the parts of plants. The Trivial names consist of one word only, and are now universally employed.

Spike; a number of Sessile flowers, placed alternately on each side of a simple flower stalk: as in many of the Grasses.

Spiket; a little spike; part of a collection of florets, contained within one common calyx. The term is chiefly applied to the Grasses. [Plate 6.]
Spokes; the little stalks which support the umbel-lules, or the separate flowers, in umbelliferous plants.

Sta'men; part of a flower, composed of a Filament and an Anther. [Plate 1.]

Standard; the upper petal of a butterfly-shaped blossom. [Plate 19.] The standard is very remark-able in the common Pea.

Stem; the trunk of a plant,—supporting the leaves, branches, and flower-stalks, or flowers. It rises immediately from the root, or bulb. [Plates 5. and 9.]

Stip'ula; a scale at the base of young leaf stalks. [Plate 19.]

Stolonif'erous; putting forth suckers.

Straw; the stem of a Grass.

Strob'ile.—See Cone.

Style; that part of a pistil which stands upon the germen, and supports the summit. [Plate 1.]

Suckers; shoots which spring from the root, spread along or under the ground, and then take root themselves.

Summit; the uppermost part of a pistil. [Plate 1.]

Superior; a term applied to the calyx or corolla, when it is placed above the germen; which last is then called Inferior. [Plate 9.] The germen is Superior, when it is placed above, or within, the calyx or corolla. [Plates 10. and 12.]

Syngene'sia; the name of the nineteenth class: anthers united, flowers compound. [Plates 2. and 21.]
TARGET-SHAPED; round and flattened; something like the under side of a saucer, or the head of a common brass nail: as the summit of the pistil in the Poppy. [Plate 15.]

TETRADYNAMIA; the name of the fifteenth class: six stamens in each flower; four long and two short. [Plates 1. and 17.]

TETRAGYNIA; the name of one of the orders, in several of the classes: four pistils in each flower.

TETRANORIA; the name of the fourth class: four stamens in each flower. [Plates 2. and 7.]

THORNS; sharp-pointed projections, growing from the woody substance of a plant: as in the Furze and Blackthorn. Prickles grow from the bark only. [Plates 14. and 22.]

TREE; a vegetable with a single woody trunk,—divided, at the top, into branches, and enduring for many years.

TRIANORIA; the name of the third class: three stamens in each flower. [Plates 2. and 5.]

TRIGYNIA; the name of one of the orders in several of the classes: three pistils in each flower.

TRIVIAL NAME; that which is now universally added to the generic name, to denote the species: as in Crocus versus:—the first is the Generic, the second the Trivial name. The trivial name is not unfrequently called the specific name of the plant; but Linæus used the latter term in a different sense. (See Specific.)
EXPLANATION OF

Tube; the lower narrow part of a blossom of one petal, by which it is fixed to the receptacle. [Plates 5. 10. and 16.]

U

Umbel; an assemblage of flowers, in which a number of slender fruit-stalks grow from the same centre, and rise nearly to the same height: so as to form a flat surface at top: as in the Hemlock and Cow Parsnip. The separate fruit stalks are often called the Spokes of the umbel.

Umbelliferous; a term applied to plants, which produce their flowers in umbels.

Umbellule; a little umbel.—In many umbelliferous plants, each spoke of the umbel has an umbellule at its end.

Under-shrub; a plant, in which the lower part only of the stem is woody; but its upper part herbaceous, and dying every year.

V

Valves; the pieces that compose a seed-vessel. [Wood-cut, page 194.] The pod of the Wall-flower has two valves, with a partition between them. [Plate 1.]—The term is applied also to the projecting substances which, in some blossoms, close the mouth of the tube. [Plate 8.]

Varieties; plants, of the same species, which differ slightly from each other; as in colour, size, or some other unimportant circumstance. The purple, yellow, and white Crocuses, for example, are varieties of the species Ver'nis. When the seeds of any one
plant are sown, the plants which they produce are often different varieties; but the species is always the same.

Veil; a conical covering of the capsule in several Mosses; somewhat like an extinguisher. [Plates 2. and 21.

Vivip'arous; a term used where the seeds germinate or grow without being separated from the parent plant, instead of falling to the ground, as is common. Examples may be seen in several of the Grasses.

W

Wheel-shaped; a term applied to a blossom of one petal, with a flat border, and a very short tube; like that of the Germander Speedwell. [Plate 3.]

Wings; the side petals of a butterfly-shaped blossom. [Plate 19.]

Winged; applied to seeds,—furnished with a thin flat membrane on each side: as in the Maple.

Woody; like wood, not herbaceous: as the principal stem of the Wall-flower. [Plate 16.]
GENERAL INDEX.

A

Aca'cia tree	Page 201
A'cer campes'tre	Page 103
— Pseudo-plat'anus	Page 103
— sacchari'num	Page 38, 103
Acon'tum Napel'lus	Page 155
Ac'orus Cal'amus	Page 85
Actæ'a	Page 140
Adanso'nia digita'ta	Page 91
Æs'culus Hippocas'tanum	Page 98
African Marigold	Page 119
—— plants	Page 173
Agar'icus campes'tris	Page 242
—— delicio'sus	Page 242
—— xerampeli'nus	Page 242
Aga've America'na	Page 38
Aggregate flowers	Page 209
Agrostem'ma Githa'go described	Page 117
Alder-tree	Page 50
Al'gæ	Page 236
——, submersed	Page 239
Al'lium	Page 87
—— Ce'pa	Page 87
—— Por'rum	Page 87
—— Schanopra'sum	Page 85
Almond-tree	Page 138
Aloe, American	Page 89
Alpine plants	Page 173
Althe'a	Page 185
American Maple-tree	Page 38
—— plants	Page 173

Amyg'dalus commu'nis	Page 138
———— Per'sica	Page 138
Amy'ris Gileaden'sis	Page 105
Anagal'lis arven'sis	Page 119
Angel'ica	Page 71
Angiosper'mia	Page 14, 165
Animated Oat	Page 36
Annuals	Page 92, 127
Anotta	Page 156
An'themis nob'ilis	Page 214
Anthers	Page 6
Anthoxan'thurmodora'tum	Page 29
Antirrhi'num	Page 170
A'pium grave'olens	Page 72
——— Petroseli'num	Page 72
Apple-tree	Page 136
Apple-bearing Sage	Page 108
Apricot-tree	Page 134
Aquile'gia vul'garis	Page 154
Ar'butus alpi'na	Page 115
——— une'do	Page 114
Arc'tium Lap'pa	Page 167, 214
Aristolo'chia Clemati'tis	Page 91
Arrow-root	Page 21
Artichoke	Page 7, 214
———, Jerusalem	Page 214
Artificial orders	Page 164
Artocar'pus in'cisa	Page 218
———— integrifo'lia	Page 218
Arun'do arena'ria	Page 38
——— bam'bos	Page 39
GENERAL INDEX.

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash-tree</td>
<td>27</td>
</tr>
<tr>
<td>Asiatic plants</td>
<td>173</td>
</tr>
<tr>
<td>Asparagus</td>
<td>85</td>
</tr>
<tr>
<td>Aspen-tree</td>
<td>105</td>
</tr>
<tr>
<td>Astilbe chinesis</td>
<td>214</td>
</tr>
<tr>
<td>Astragalus Tragacantha</td>
<td>201</td>
</tr>
<tr>
<td>Atropa Belladonna</td>
<td>62</td>
</tr>
<tr>
<td>Auricula</td>
<td>69</td>
</tr>
<tr>
<td>Ave na fatua</td>
<td>36</td>
</tr>
<tr>
<td>sativa</td>
<td>35</td>
</tr>
<tr>
<td>Awns</td>
<td>49</td>
</tr>
<tr>
<td>Balm</td>
<td>169</td>
</tr>
<tr>
<td>Balsam-tree</td>
<td>55</td>
</tr>
<tr>
<td>Bamboo</td>
<td>39</td>
</tr>
<tr>
<td>Barberry</td>
<td>85</td>
</tr>
<tr>
<td>its stamens</td>
<td>88</td>
</tr>
<tr>
<td>Barley</td>
<td>35</td>
</tr>
<tr>
<td>wall</td>
<td>36</td>
</tr>
<tr>
<td>Bay-tree</td>
<td>111</td>
</tr>
<tr>
<td>Beans</td>
<td>198</td>
</tr>
<tr>
<td>kidney</td>
<td>197</td>
</tr>
<tr>
<td>Beech-nut oil</td>
<td>128</td>
</tr>
<tr>
<td>tree</td>
<td>128</td>
</tr>
<tr>
<td>Beet, common</td>
<td>38</td>
</tr>
<tr>
<td>Bell-flower</td>
<td>69</td>
</tr>
<tr>
<td>Bel’isperen’nis, described</td>
<td>213</td>
</tr>
<tr>
<td>Ber’beris vulgaris</td>
<td>85</td>
</tr>
<tr>
<td>Bergamot</td>
<td>204</td>
</tr>
<tr>
<td>Bet’ula al’ba</td>
<td>49</td>
</tr>
<tr>
<td>Al’nus</td>
<td>50</td>
</tr>
<tr>
<td>na’na</td>
<td>50</td>
</tr>
<tr>
<td>Biennials</td>
<td>127</td>
</tr>
<tr>
<td>Bilberry</td>
<td>103</td>
</tr>
<tr>
<td>Bindweed</td>
<td>69</td>
</tr>
<tr>
<td>small</td>
<td>119</td>
</tr>
<tr>
<td>Birch-tree</td>
<td>49</td>
</tr>
<tr>
<td>dwarf</td>
<td>50</td>
</tr>
<tr>
<td>Bird’s-foot Clover</td>
<td>196</td>
</tr>
<tr>
<td>dressed</td>
<td></td>
</tr>
<tr>
<td>Bird’s-nest</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bix’a Orella’na</td>
<td>156</td>
</tr>
<tr>
<td>Blackberry</td>
<td>133</td>
</tr>
<tr>
<td>Black Bryony</td>
<td>93</td>
</tr>
<tr>
<td>Pepper</td>
<td>27</td>
</tr>
<tr>
<td>Poplar</td>
<td>106</td>
</tr>
<tr>
<td>Spruce Fir</td>
<td>187</td>
</tr>
<tr>
<td>thorn</td>
<td>135</td>
</tr>
<tr>
<td>Bladder fu’cus</td>
<td>239</td>
</tr>
<tr>
<td>Bloom</td>
<td>134</td>
</tr>
<tr>
<td>Blossom</td>
<td>6</td>
</tr>
<tr>
<td>monopetalous</td>
<td>23</td>
</tr>
<tr>
<td>polypetalous</td>
<td>23</td>
</tr>
<tr>
<td>Blue-bottle</td>
<td>214</td>
</tr>
<tr>
<td>Bog-moss</td>
<td>234</td>
</tr>
<tr>
<td>Bole’tus ignia’rius</td>
<td>242</td>
</tr>
<tr>
<td>Border of the blossom</td>
<td>24</td>
</tr>
<tr>
<td>Botany</td>
<td>2</td>
</tr>
<tr>
<td>its uses</td>
<td>3, 4</td>
</tr>
<tr>
<td>Box-tree</td>
<td>51</td>
</tr>
<tr>
<td>Brakes</td>
<td>231</td>
</tr>
<tr>
<td>Bramble</td>
<td>133</td>
</tr>
<tr>
<td>dwarf crimson</td>
<td>134</td>
</tr>
<tr>
<td>Bras’sica chinen’sis</td>
<td>179</td>
</tr>
<tr>
<td>Na’pus</td>
<td>179</td>
</tr>
<tr>
<td>oleracea</td>
<td>179</td>
</tr>
<tr>
<td>ra’pa</td>
<td>179</td>
</tr>
<tr>
<td>Brazil-wood</td>
<td>120</td>
</tr>
<tr>
<td>Breadfruit-tree</td>
<td>218</td>
</tr>
<tr>
<td>Briar, sweet</td>
<td>131</td>
</tr>
<tr>
<td>Brome’tia Ana’nas</td>
<td>85</td>
</tr>
<tr>
<td>Broom</td>
<td>198</td>
</tr>
<tr>
<td>butchers’</td>
<td>43</td>
</tr>
<tr>
<td>Bryony, black</td>
<td>93</td>
</tr>
<tr>
<td>Buckthorn</td>
<td>63</td>
</tr>
<tr>
<td>yellow-berried</td>
<td>63</td>
</tr>
<tr>
<td>Buds</td>
<td>99</td>
</tr>
<tr>
<td>Bulbs</td>
<td>95</td>
</tr>
<tr>
<td>Bullrush</td>
<td>41</td>
</tr>
<tr>
<td>Bu’num flexuo’sum</td>
<td>71</td>
</tr>
<tr>
<td>Burdock</td>
<td>167.214</td>
</tr>
<tr>
<td>Butchers’ broom</td>
<td>43</td>
</tr>
<tr>
<td>Bu’tomus umbella’tus</td>
<td>110</td>
</tr>
<tr>
<td>Butterbur-Coltsfoot</td>
<td>Page 167</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Buttercup</td>
<td>129</td>
</tr>
<tr>
<td>Bux'us sempervi'rens</td>
<td>51</td>
</tr>
<tr>
<td>Bys'sus sept'ica</td>
<td>242</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Cal'amus Petra'us</td>
<td>90</td>
</tr>
<tr>
<td>Cal'da Petra'us</td>
<td>90</td>
</tr>
<tr>
<td>— — — — — — Ro'tang</td>
<td>90</td>
</tr>
<tr>
<td>Cal'tha palus'tris</td>
<td>90</td>
</tr>
<tr>
<td>Calvyx</td>
<td>6, 118</td>
</tr>
<tr>
<td>— — cadu'cous</td>
<td>141</td>
</tr>
<tr>
<td>— — decid'ous</td>
<td>141</td>
</tr>
<tr>
<td>— — diphyl'ous</td>
<td>23</td>
</tr>
<tr>
<td>— — double</td>
<td>184</td>
</tr>
<tr>
<td>— — monophyl'lous</td>
<td>23</td>
</tr>
<tr>
<td>— — permanent</td>
<td>141</td>
</tr>
<tr>
<td>— — polyphyl'lous</td>
<td>23</td>
</tr>
<tr>
<td>— — triphyl'lous</td>
<td>23</td>
</tr>
<tr>
<td>Campan'ula</td>
<td>69</td>
</tr>
<tr>
<td>Camp'hire-tree</td>
<td>112</td>
</tr>
<tr>
<td>Candle-berry Myrtle</td>
<td>51</td>
</tr>
<tr>
<td>Candy-tuft</td>
<td>92, 178</td>
</tr>
<tr>
<td>Can'nia in'dica</td>
<td>21</td>
</tr>
<tr>
<td>Can'nabis sati'va</td>
<td>226</td>
</tr>
<tr>
<td>Caper-bush</td>
<td>153</td>
</tr>
<tr>
<td>Cap'paris spino'sa</td>
<td>153</td>
</tr>
<tr>
<td>Capsule</td>
<td>142</td>
</tr>
<tr>
<td>Caoutchouc</td>
<td>221</td>
</tr>
<tr>
<td>Car'duus</td>
<td>214</td>
</tr>
<tr>
<td>Ca'rex</td>
<td>44</td>
</tr>
<tr>
<td>— — acu'ta</td>
<td>44</td>
</tr>
<tr>
<td>Carnation</td>
<td>116</td>
</tr>
<tr>
<td>Carraway</td>
<td>71</td>
</tr>
<tr>
<td>Carrot</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>Class eleven</td>
<td>10. 123</td>
</tr>
<tr>
<td>—— twelve</td>
<td>10. 129</td>
</tr>
<tr>
<td>—— thirteen</td>
<td>10. 139</td>
</tr>
<tr>
<td>—— fourteen</td>
<td>11. 161</td>
</tr>
<tr>
<td>—— fifteen</td>
<td>11. 177</td>
</tr>
<tr>
<td>—— sixteen</td>
<td>11. 182</td>
</tr>
<tr>
<td>—— seventeen</td>
<td>11. 191</td>
</tr>
<tr>
<td>—— eighteen</td>
<td>11. 202</td>
</tr>
<tr>
<td>—— nineteen</td>
<td>11. 209</td>
</tr>
<tr>
<td>—— twenty</td>
<td>11. 217</td>
</tr>
<tr>
<td>—— twenty-one</td>
<td>11. 218</td>
</tr>
<tr>
<td>—— twenty-two</td>
<td>11. 224</td>
</tr>
<tr>
<td>—— twenty-three</td>
<td>11. 227</td>
</tr>
<tr>
<td>—— twenty-four</td>
<td>12. 229</td>
</tr>
<tr>
<td>Classes</td>
<td>10.</td>
</tr>
<tr>
<td>Claws</td>
<td>117.</td>
</tr>
<tr>
<td>Clem'atis Vital'ba</td>
<td>155.</td>
</tr>
<tr>
<td>Climate, effects of, on plants</td>
<td>173.</td>
</tr>
<tr>
<td>Climbers</td>
<td>92.</td>
</tr>
<tr>
<td>Clothiers' Teasel</td>
<td>48.</td>
</tr>
<tr>
<td>Cloudberry</td>
<td>133.</td>
</tr>
<tr>
<td>Clove-tree</td>
<td>137.</td>
</tr>
<tr>
<td>Clover, Bird's foot, described</td>
<td>190.</td>
</tr>
<tr>
<td>Club moss</td>
<td>234.</td>
</tr>
<tr>
<td>Clu'sia ro'sea</td>
<td>55.</td>
</tr>
<tr>
<td>Cochlea'ria armora'cia</td>
<td>178.</td>
</tr>
<tr>
<td>Cock's foot, rough</td>
<td>41.</td>
</tr>
<tr>
<td>Cocoa-nut-tree</td>
<td>219.</td>
</tr>
<tr>
<td>Co'cos nucl'era</td>
<td>219.</td>
</tr>
<tr>
<td>Coffe'a arab'ica</td>
<td>68.</td>
</tr>
<tr>
<td>—— occidenta'lis</td>
<td>68.</td>
</tr>
<tr>
<td>Coffee-tree</td>
<td>68.</td>
</tr>
<tr>
<td>Columbine</td>
<td>155.</td>
</tr>
<tr>
<td>Colt's foot</td>
<td>214.</td>
</tr>
<tr>
<td>Colours</td>
<td>30.</td>
</tr>
<tr>
<td>Compound flowers</td>
<td>209.</td>
</tr>
<tr>
<td>Cones</td>
<td>188.</td>
</tr>
<tr>
<td>Conferva</td>
<td>241.</td>
</tr>
<tr>
<td>Convallaria maja'lis</td>
<td>85</td>
</tr>
<tr>
<td>Convol'vulus</td>
<td>69.</td>
</tr>
<tr>
<td>—— arven'se</td>
<td>119.</td>
</tr>
</tbody>
</table>
GENERAL INDEX.

<table>
<thead>
<tr>
<th>D</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dac'tylis glomera'ta, de-scribed</td>
<td>41</td>
</tr>
<tr>
<td>—— stric'ta</td>
<td>42</td>
</tr>
<tr>
<td>Daffodil</td>
<td>85</td>
</tr>
<tr>
<td>Dahlia</td>
<td>214</td>
</tr>
<tr>
<td>Daisy, described</td>
<td>206. 213</td>
</tr>
<tr>
<td>——, Ox-eye</td>
<td>214</td>
</tr>
<tr>
<td>Damask rose</td>
<td>132</td>
</tr>
<tr>
<td>Dandelion</td>
<td>213</td>
</tr>
<tr>
<td>Daph'ne laget'to</td>
<td>102</td>
</tr>
<tr>
<td>—— meze'reum, de-scribed</td>
<td>101</td>
</tr>
<tr>
<td>Darnel</td>
<td>34</td>
</tr>
<tr>
<td>Date-palm</td>
<td>225</td>
</tr>
<tr>
<td>Dau'cus caro'ta</td>
<td>71</td>
</tr>
<tr>
<td>Deadly nightshade</td>
<td>62</td>
</tr>
<tr>
<td>Decagyn'ia</td>
<td>13</td>
</tr>
<tr>
<td>Decan'dria, class</td>
<td>10. 117</td>
</tr>
<tr>
<td>——, order</td>
<td>182</td>
</tr>
<tr>
<td>Decid'uous calyx</td>
<td>141</td>
</tr>
<tr>
<td>—— leaves</td>
<td>48</td>
</tr>
<tr>
<td>Decumbent plants</td>
<td>196</td>
</tr>
<tr>
<td>Delphinium consol'idia</td>
<td>155</td>
</tr>
<tr>
<td>Diadel'phia</td>
<td>11. 190</td>
</tr>
<tr>
<td>Dian'dria</td>
<td>10. 22.</td>
</tr>
<tr>
<td>Dian'thus Caryophyll'us</td>
<td>116</td>
</tr>
<tr>
<td>Dicotre'donous plants</td>
<td>144</td>
</tr>
<tr>
<td>Didyna'mia</td>
<td>10. 161</td>
</tr>
<tr>
<td>Digita'lis purpu'rea</td>
<td>169</td>
</tr>
<tr>
<td>Digyn'ia</td>
<td>13</td>
</tr>
<tr>
<td>Dio'cia</td>
<td>11. 22</td>
</tr>
<tr>
<td>Diphyl'lous calyx</td>
<td>23</td>
</tr>
<tr>
<td>Dip'sacus fullo'num</td>
<td>48</td>
</tr>
<tr>
<td>Distribution of plants</td>
<td>173</td>
</tr>
<tr>
<td>—— seeds</td>
<td>146</td>
</tr>
<tr>
<td>Dodder</td>
<td>54</td>
</tr>
<tr>
<td>Dodecagyn'ia</td>
<td>14. 124</td>
</tr>
<tr>
<td>Dodecan'dria</td>
<td>10. 123</td>
</tr>
<tr>
<td>Dog-rose examined</td>
<td>130</td>
</tr>
<tr>
<td>Dog-wood</td>
<td>195</td>
</tr>
<tr>
<td>Double calyx</td>
<td>184</td>
</tr>
<tr>
<td>—— flowers</td>
<td>86</td>
</tr>
</tbody>
</table>

Down
- feathered | 210
- —— on a pillar | 210
- ——, simple | 210
- Dry-rot | 241
- Dulse | 38. 240
- Dutch myrtle | 51
- —— pink | 126
- Dwarf Birch-tree | 50
- Dyers' green-weed | 198
- —— weed | 126
- —— lichen | 238

E
- Earth-nut | 71
- Effects of climate | 173
- —— cultivation | 72
- —— heat | 173
- —— light | 173
- Egg-plant | 62
- Egplantine | 131
- Egyptian Cassia | 120
- —— Lo'tus | 154
- —— Papy'rus | 79
- Elder | 73
- —— leaves | 74
- Elm-tree | 75
- ——, red | 75
- El'ymus arenaria'us | 36
- Embryo | 144
- Ennea'gyn'ia | 13
- Ennean'dria | 19, 109
- Epiden'drum flos aëris | 55
- Eri'ca | 100
- —— odor ro'sea | 100
- —— tenuiflo'ra | 100
- Ero'dium | 183
- Eucalyp'tus | 138
- —— glob'ulus | 138
- Euge'nia caryophylla'ta | 137
- Evergreens | 47
<table>
<thead>
<tr>
<th>F</th>
<th>Page</th>
<th>G</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa'gus C asta'</td>
<td>127</td>
<td>Galan'thus niva'lis, described</td>
<td>84</td>
</tr>
<tr>
<td>sylvat'ica</td>
<td>128</td>
<td>Galls</td>
<td>108</td>
</tr>
<tr>
<td>Fan-Palm</td>
<td>91</td>
<td>Garden Nightshade</td>
<td>61</td>
</tr>
<tr>
<td>Fari'na</td>
<td>15</td>
<td>Tulip</td>
<td>15. 84</td>
</tr>
<tr>
<td>Feathered down</td>
<td>210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-pillar</td>
<td>210</td>
<td>Gene'ra</td>
<td>16</td>
</tr>
<tr>
<td>Fennel</td>
<td>71</td>
<td>Genis'ta tincto'ria</td>
<td>198</td>
</tr>
<tr>
<td>Fern, sensitive</td>
<td>232</td>
<td>Ge'nus</td>
<td>16</td>
</tr>
<tr>
<td>Ferns</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fescue-grass</td>
<td>35</td>
<td>Geranium</td>
<td>18. 183</td>
</tr>
<tr>
<td>Festu'ca flu'itans</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-vivip'ara</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fi'cus Car'ica</td>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig</td>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fil'aments</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fil'ices</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fir, black Spruce</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—, Scotch</td>
<td>186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish-bean</td>
<td>195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flax</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florets</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floating Fescue</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower-of-the-Air</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, parts of a</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowering Fern</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-Rush, described</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowers, aggregate</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, compound</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, cru'ciform</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, double</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, full</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, labiate</td>
<td>169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, multiplied</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, papilion'aeous</td>
<td>191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, perfect</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, sessile</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, single</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, solitary</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, treble</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forget-me-not</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower-of-the-Air</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, parts of a</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowering Fern</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-Rush, described</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowers, aggregate</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, compound</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, cru'ciform</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, double</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, full</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, labiate</td>
<td>169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, multiplied</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, papilion'aeous</td>
<td>191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, perfect</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, sessile</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, single</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, solitary</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——-, treble</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forget-me-not</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gooseberry</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gossyp’ium</td>
<td>189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gram’ina</td>
<td>163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapes, sugar of</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass, rough Cock’s-foot,</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass of Parnassus</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasses</td>
<td>33, 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——, stoloniferous</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——, vivip'arous</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassy Crown</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—— Sea</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——, eat Flower</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green-weed, dyers’</td>
<td>199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grey bog-moss</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Ivy, described</td>
<td>166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundsel</td>
<td>214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guelder-rose</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gu’iacum officinale</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gum an’ime</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—— Ar’abic</td>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—— gua’iacum</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—— mas’tick</td>
<td>226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—— trag’acanth</td>
<td>201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnosper’mia</td>
<td>14, 165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gynan’dria</td>
<td>11, 217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hæmatox’ylon campeachini’-a’num</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair Powder</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hairs upon leaves</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawthorn</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazel-nut-tree</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart’s-ease</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat, effects of, on vegeta-</td>
<td>174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heath</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hed’era He’lix</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedys’arum gy’rans</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helian’thus an’nuus</td>
<td>214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>———— tubero’sus</td>
<td>214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemlock, water</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemp</td>
<td>226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herac’leum Sphondyi’um</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herba’ceous plants</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbs</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepat’icæ</td>
<td>230, 236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptagyn’ia</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptan’dria</td>
<td>19, 98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexagyn’ia</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexan’dria</td>
<td>19, 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hippoma’ne mancinell’a</td>
<td>223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hipp’purus vulga’ris</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holly, described</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollyhock</td>
<td>185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honey-flower</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——— suckle</td>
<td>69, 93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hops</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hor’deum muri’nun</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——— vulga’re</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horehound</td>
<td>169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horned Poppy</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse-Chesnut</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>———— Radish</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Houseleek, described</td>
<td>124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Husk</td>
<td>34, 144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyacinth</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyacin’thus non-scrip’tus</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——— orienta’lis</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocha’ris</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hymene’a Courb’aril</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyper’icum Androsae’mum,</td>
<td>202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>described</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tberis ama’ra</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland Moss</td>
<td>238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icosan’dria</td>
<td>10, 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I’lex Aquifolium, de-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scribed</td>
<td>45, 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperial Tea</td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian arrow-root</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corn</td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaca-tree</td>
<td>218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oak</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reed</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rubber</td>
<td>221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shot</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woman, Story of</td>
<td>157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indigo</td>
<td>199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indigo'fera tincto'tria</td>
<td>199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior germen</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involu'crum</td>
<td>74, 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isa'tis tincto'tria</td>
<td>199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivy</td>
<td>54, 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaca-tree</td>
<td>218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaica Dogwood</td>
<td>195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jasmi'num officina'le</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jat'ropha elas'tica</td>
<td>221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jerusalem Artichoke</td>
<td>214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jessamine</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ju'glans re'gia</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniper-tree</td>
<td>182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniper'rus bermudia'na</td>
<td>183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>commu'nis</td>
<td>182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ly'cia</td>
<td>183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamschatka lily</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelp</td>
<td>20, 239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney-bean</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labiate flowers</td>
<td>169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laburnum</td>
<td>195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lace-bark-tree</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactu'ca viro'sa</td>
<td>215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larch-tree</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larkspur</td>
<td>155</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lath'yrus odora'tus</td>
<td>198</td>
</tr>
<tr>
<td>Laudanum</td>
<td>150</td>
</tr>
<tr>
<td>Laurel</td>
<td>111</td>
</tr>
<tr>
<td>cherry</td>
<td>134</td>
</tr>
<tr>
<td>spurge</td>
<td>31</td>
</tr>
<tr>
<td>Lau'rus Campho'ra</td>
<td>112</td>
</tr>
<tr>
<td>Cinnamo'mum</td>
<td>111</td>
</tr>
<tr>
<td>nob'ilis</td>
<td>111</td>
</tr>
<tr>
<td>Laurusti'rus</td>
<td>77</td>
</tr>
<tr>
<td>Lavandula Spi'ca</td>
<td>169</td>
</tr>
<tr>
<td>Lavate'ra</td>
<td>184</td>
</tr>
<tr>
<td>Lavender</td>
<td>169</td>
</tr>
<tr>
<td>Leaves, deciduous</td>
<td>48</td>
</tr>
<tr>
<td>, uses of</td>
<td>1</td>
</tr>
<tr>
<td>Legu'men</td>
<td>194</td>
</tr>
<tr>
<td>Legu'minous Plants</td>
<td>195</td>
</tr>
<tr>
<td>Lemon, salt of</td>
<td>119</td>
</tr>
<tr>
<td>tree</td>
<td>204</td>
</tr>
<tr>
<td>Leon'todon Tarax'acum</td>
<td>213</td>
</tr>
<tr>
<td>Lettuce, wild</td>
<td>215</td>
</tr>
<tr>
<td>Lichen, dyers'</td>
<td>238</td>
</tr>
<tr>
<td>Islan'dicus</td>
<td>238</td>
</tr>
<tr>
<td>rangiferi'rus</td>
<td>237</td>
</tr>
<tr>
<td>roccel'la</td>
<td>238</td>
</tr>
<tr>
<td>tarta'reus</td>
<td>239</td>
</tr>
<tr>
<td>Li'chens</td>
<td>236</td>
</tr>
<tr>
<td>Lid</td>
<td>232</td>
</tr>
<tr>
<td>Light, effects of, on plants</td>
<td>174</td>
</tr>
<tr>
<td>Lignum-vi'tae-tree</td>
<td>120</td>
</tr>
<tr>
<td>Ligus'trum vulga're</td>
<td>26</td>
</tr>
<tr>
<td>Lilac</td>
<td>28</td>
</tr>
<tr>
<td>Lilia'ceous plants</td>
<td>162</td>
</tr>
<tr>
<td>Lilium Camschatcen'ze</td>
<td>96</td>
</tr>
<tr>
<td>Lilies</td>
<td>95</td>
</tr>
<tr>
<td>Lily, Kamschatka</td>
<td>96</td>
</tr>
<tr>
<td>of the Nile</td>
<td>154</td>
</tr>
<tr>
<td>of the valley</td>
<td>85</td>
</tr>
<tr>
<td>, white water</td>
<td>153</td>
</tr>
<tr>
<td>, yellow water</td>
<td>154</td>
</tr>
<tr>
<td>Lime-tree</td>
<td>154</td>
</tr>
<tr>
<td>Linden-tree</td>
<td>154</td>
</tr>
<tr>
<td>Linnaæan System</td>
<td>9</td>
</tr>
<tr>
<td>Linnaeus</td>
<td>2</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Linseed-oil</td>
<td>78</td>
</tr>
<tr>
<td>Li'num usitatissimum</td>
<td>78</td>
</tr>
<tr>
<td>Liquorice, wild</td>
<td>198</td>
</tr>
<tr>
<td>Liriodendron Tulipifera</td>
<td>155</td>
</tr>
<tr>
<td>Liverworts</td>
<td>236</td>
</tr>
<tr>
<td>Lobes</td>
<td>144</td>
</tr>
<tr>
<td>Locust-tree</td>
<td>121</td>
</tr>
<tr>
<td>Logwood-tree</td>
<td>120</td>
</tr>
<tr>
<td>Lolium temulentum</td>
<td>34</td>
</tr>
<tr>
<td>London Pride</td>
<td>115</td>
</tr>
<tr>
<td>Lonice'ra</td>
<td>69</td>
</tr>
<tr>
<td>Lotus corniculatus, described</td>
<td>196</td>
</tr>
<tr>
<td>Love Apple</td>
<td>62</td>
</tr>
<tr>
<td>Lycopo'dium clava'tum</td>
<td>234</td>
</tr>
<tr>
<td>Lupine</td>
<td>195</td>
</tr>
<tr>
<td>Lupin'us</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madder</td>
<td>49</td>
</tr>
<tr>
<td>Mahogany-tree</td>
<td>121</td>
</tr>
<tr>
<td>Maize</td>
<td>219</td>
</tr>
<tr>
<td>Mallow, described</td>
<td>185</td>
</tr>
<tr>
<td>———, marsh</td>
<td>184</td>
</tr>
<tr>
<td>———— tree</td>
<td>184</td>
</tr>
<tr>
<td>Mal'va sylves'tris, described</td>
<td>185</td>
</tr>
<tr>
<td>Manchineel-tree</td>
<td>223</td>
</tr>
<tr>
<td>Maple-tree</td>
<td>103</td>
</tr>
<tr>
<td>———, American</td>
<td>38</td>
</tr>
<tr>
<td>——— Sugar</td>
<td>103</td>
</tr>
<tr>
<td>Maran'ta arundina'cea</td>
<td>21</td>
</tr>
<tr>
<td>Mare's-tail</td>
<td>20</td>
</tr>
<tr>
<td>Marigold, African</td>
<td>119</td>
</tr>
<tr>
<td>———, marsh</td>
<td>167</td>
</tr>
<tr>
<td>Marjoram</td>
<td>169</td>
</tr>
<tr>
<td>Marking-nut-tree</td>
<td>77</td>
</tr>
<tr>
<td>Marru'bium vulga're</td>
<td>169</td>
</tr>
<tr>
<td>Marsh Mallow</td>
<td>184</td>
</tr>
<tr>
<td>——— Marigold</td>
<td>167</td>
</tr>
<tr>
<td>——— Samphire</td>
<td>20</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Mouse-ear, described</td>
<td>65</td>
</tr>
<tr>
<td>Moving plant</td>
<td>200</td>
</tr>
<tr>
<td>Mulberry-tree</td>
<td>168, 224</td>
</tr>
<tr>
<td>Multiplied flowers</td>
<td>87</td>
</tr>
<tr>
<td>Mungo Park</td>
<td>235</td>
</tr>
<tr>
<td>Mu'sa paradisi'aca</td>
<td>227</td>
</tr>
<tr>
<td>Mus'ci</td>
<td>230</td>
</tr>
<tr>
<td>Mushrooms</td>
<td>242</td>
</tr>
<tr>
<td>Mustard</td>
<td>179</td>
</tr>
<tr>
<td>Myoso'tis palus'tris, described</td>
<td>65</td>
</tr>
<tr>
<td>Myri'ca cerif'era</td>
<td>51</td>
</tr>
<tr>
<td>———_ ga'le</td>
<td>51</td>
</tr>
<tr>
<td>Myris'tica moscha'ta</td>
<td>226</td>
</tr>
<tr>
<td>Myrtle</td>
<td>137</td>
</tr>
<tr>
<td>———_, Candleberry</td>
<td>51</td>
</tr>
<tr>
<td>———_, Dutch</td>
<td>51</td>
</tr>
<tr>
<td>Myr'tus commu'nis</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Names of plants</td>
<td>17</td>
</tr>
<tr>
<td>Nankin</td>
<td>189</td>
</tr>
<tr>
<td>Naphtha</td>
<td>222</td>
</tr>
<tr>
<td>Narcis'sus Pseudo-Narcis'sus</td>
<td>85</td>
</tr>
<tr>
<td>Natural Orders</td>
<td>162, 164</td>
</tr>
<tr>
<td>Nectarine-tree</td>
<td>138</td>
</tr>
<tr>
<td>Nectary</td>
<td>7, 83</td>
</tr>
<tr>
<td>Nicotia'na tab'acum</td>
<td>68, 143</td>
</tr>
<tr>
<td>Night-shade, deadly</td>
<td>62</td>
</tr>
<tr>
<td>———_, garden</td>
<td>61</td>
</tr>
<tr>
<td>———_, woody</td>
<td>61</td>
</tr>
<tr>
<td>Norway bread</td>
<td>35</td>
</tr>
<tr>
<td>———_ pine</td>
<td>187</td>
</tr>
<tr>
<td>Number of plants known</td>
<td>165</td>
</tr>
<tr>
<td>Nut oil</td>
<td>105</td>
</tr>
<tr>
<td>Nutmeg-tree</td>
<td>226</td>
</tr>
<tr>
<td>Nympha'e a'la'ba</td>
<td>153</td>
</tr>
<tr>
<td>———_ Lo'tus</td>
<td>154</td>
</tr>
<tr>
<td>———_ lu'tea</td>
<td>154</td>
</tr>
<tr>
<td>———_ Nelum'bo</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>General Index</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>279</td>
<td>Order Monogyn’ia 13. 15</td>
</tr>
<tr>
<td>230</td>
<td>Parsley 72</td>
</tr>
<tr>
<td>13</td>
<td>Parsnep 71</td>
</tr>
<tr>
<td>117</td>
<td>Parts of a flower 6</td>
</tr>
<tr>
<td>183</td>
<td>———— plant 5</td>
</tr>
<tr>
<td>202</td>
<td>Pastina’ca sati’va 71</td>
</tr>
<tr>
<td>138</td>
<td>Peach-tree</td>
</tr>
<tr>
<td>136</td>
<td>Pear-tree 136</td>
</tr>
<tr>
<td>198</td>
<td>Pea 198</td>
</tr>
<tr>
<td>198</td>
<td>————, sweet 198</td>
</tr>
<tr>
<td>183</td>
<td>Pelargo’nium</td>
</tr>
<tr>
<td>183</td>
<td>Pentagyn’ia</td>
</tr>
<tr>
<td>183</td>
<td>Pentan’dria class 13. 117</td>
</tr>
<tr>
<td>183</td>
<td>————, order 183</td>
</tr>
<tr>
<td>27</td>
<td>Pepper 27</td>
</tr>
<tr>
<td>27</td>
<td>————, white 27</td>
</tr>
<tr>
<td>127</td>
<td>Perennials 127</td>
</tr>
<tr>
<td>20</td>
<td>Perfect flowers 20</td>
</tr>
<tr>
<td>69</td>
<td>Periwinkle 69</td>
</tr>
<tr>
<td>141</td>
<td>Permanent calyx 141</td>
</tr>
<tr>
<td>136</td>
<td>Perry 136</td>
</tr>
<tr>
<td>6</td>
<td>Pet’als 6</td>
</tr>
<tr>
<td>197</td>
<td>Phase’olus vulgar’is 197</td>
</tr>
<tr>
<td>71</td>
<td>Phelan’drium aquati’cum 71</td>
</tr>
<tr>
<td>225</td>
<td>Phoe’nix dactylif’era 225</td>
</tr>
<tr>
<td>53</td>
<td>Pimpernel Chaffweed 53</td>
</tr>
<tr>
<td>119</td>
<td>————, scarlet 119</td>
</tr>
<tr>
<td>85</td>
<td>Pine Apple 85</td>
</tr>
<tr>
<td>186</td>
<td>Pines 186</td>
</tr>
<tr>
<td>116</td>
<td>Pinks 116</td>
</tr>
<tr>
<td>187</td>
<td>Pi’nus Abies 187</td>
</tr>
<tr>
<td>186</td>
<td>———— Ce’drus 186</td>
</tr>
<tr>
<td>187</td>
<td>———— La’rix 187</td>
</tr>
<tr>
<td>187</td>
<td>———— ni’gra 187</td>
</tr>
<tr>
<td>188</td>
<td>———— sylves’tris 188</td>
</tr>
<tr>
<td>155</td>
<td>Piony 155</td>
</tr>
<tr>
<td>27</td>
<td>Pi’per ni’grum 27</td>
</tr>
<tr>
<td>195</td>
<td>Piscidia’ Erythri’na 195</td>
</tr>
<tr>
<td>225</td>
<td>Pistachia-nut-tree 225</td>
</tr>
<tr>
<td>226</td>
<td>Pista’chia Lentis’cus 226</td>
</tr>
<tr>
<td>225</td>
<td>———— Terebin’thus 225</td>
</tr>
<tr>
<td>6</td>
<td>Pistil 6</td>
</tr>
<tr>
<td>198</td>
<td>Pi’sum sati’va 198</td>
</tr>
<tr>
<td>103</td>
<td>Plane-tree</td>
</tr>
<tr>
<td>5</td>
<td>Plant, parts of a 5</td>
</tr>
<tr>
<td>Plantagenet</td>
<td>199</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Plantain-tree</td>
<td>227</td>
</tr>
<tr>
<td>Plants, African</td>
<td>173</td>
</tr>
<tr>
<td>---, Alpine</td>
<td>173</td>
</tr>
<tr>
<td>---, American</td>
<td>127</td>
</tr>
<tr>
<td>---, Annual</td>
<td>173</td>
</tr>
<tr>
<td>---, Asiatic</td>
<td>127</td>
</tr>
<tr>
<td>---, Biennial</td>
<td>196</td>
</tr>
<tr>
<td>---, Decumbent</td>
<td>138</td>
</tr>
<tr>
<td>---, Dicotyle'donous</td>
<td>144</td>
</tr>
<tr>
<td>---, distribution of</td>
<td>173</td>
</tr>
<tr>
<td>---, Herba'ceous</td>
<td>94</td>
</tr>
<tr>
<td>---, Legu'minous</td>
<td>195</td>
</tr>
<tr>
<td>---, Lilia'ceous</td>
<td>162</td>
</tr>
<tr>
<td>---, Monocotyle'don'ous</td>
<td>144</td>
</tr>
<tr>
<td>---, names of</td>
<td>17</td>
</tr>
<tr>
<td>---, number of known</td>
<td>165</td>
</tr>
<tr>
<td>---, Papiliona'ceous</td>
<td>191</td>
</tr>
<tr>
<td>---, Parasitical</td>
<td>53</td>
</tr>
<tr>
<td>---, Perennial</td>
<td>127</td>
</tr>
<tr>
<td>---, Tropical</td>
<td>95</td>
</tr>
<tr>
<td>---, Umbel'late</td>
<td>70</td>
</tr>
<tr>
<td>---, Umbellif'erous</td>
<td>70</td>
</tr>
<tr>
<td>---, Varieties of</td>
<td>29</td>
</tr>
<tr>
<td>Plum-tree</td>
<td>134</td>
</tr>
<tr>
<td>Plu'mula</td>
<td>144</td>
</tr>
<tr>
<td>Pod</td>
<td>194</td>
</tr>
<tr>
<td>Pollen</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyadel'phia</td>
<td>11. 202</td>
</tr>
<tr>
<td>Polyan'dria, class 10. 129. 139</td>
<td></td>
</tr>
<tr>
<td>Polyga'mia</td>
<td>11. 227</td>
</tr>
<tr>
<td>---, order</td>
<td>182. 202</td>
</tr>
<tr>
<td>Polygyn'ia</td>
<td>14</td>
</tr>
<tr>
<td>Polypet'alous blossom</td>
<td>23</td>
</tr>
<tr>
<td>Polyphyl'lous calyx</td>
<td>23</td>
</tr>
<tr>
<td>Polypody</td>
<td>231</td>
</tr>
<tr>
<td>Poly'trichum commu'ne</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Raspberry</td>
<td>133</td>
</tr>
<tr>
<td>Ratan</td>
<td>90</td>
</tr>
<tr>
<td>Receptacle</td>
<td>7</td>
</tr>
<tr>
<td>Red Elm</td>
<td>75</td>
</tr>
<tr>
<td>Reed</td>
<td>38</td>
</tr>
<tr>
<td>---, Indian</td>
<td>90</td>
</tr>
<tr>
<td>Rein-deer Moss</td>
<td>238</td>
</tr>
<tr>
<td>Lichen</td>
<td>238</td>
</tr>
<tr>
<td>Rese'da lute'ea</td>
<td>126</td>
</tr>
<tr>
<td>--- lute'ola</td>
<td>126</td>
</tr>
<tr>
<td>--- odora' ta</td>
<td>126</td>
</tr>
<tr>
<td>---, wild</td>
<td>126</td>
</tr>
<tr>
<td>Rham'nus catарticus</td>
<td>63</td>
</tr>
<tr>
<td>--- infecto'rius</td>
<td>63</td>
</tr>
<tr>
<td>--- Lo'tus</td>
<td>63</td>
</tr>
<tr>
<td>Rhe'um compact'um</td>
<td>112</td>
</tr>
<tr>
<td>--- palma'tum</td>
<td>112</td>
</tr>
<tr>
<td>--- Rhapon'ticum</td>
<td>112</td>
</tr>
<tr>
<td>Rhubarb</td>
<td>112</td>
</tr>
<tr>
<td>---, Chinese</td>
<td>112</td>
</tr>
<tr>
<td>Rhus</td>
<td>77</td>
</tr>
<tr>
<td>---, Ver'nix</td>
<td>77</td>
</tr>
<tr>
<td>Ribes</td>
<td>66, 67</td>
</tr>
<tr>
<td>Rice</td>
<td>89</td>
</tr>
<tr>
<td>Ric'inus commu'nis</td>
<td>222</td>
</tr>
<tr>
<td>Robin'ia pseudo-a'ca'cia</td>
<td>201</td>
</tr>
<tr>
<td>Root</td>
<td>5</td>
</tr>
<tr>
<td>---, creeping</td>
<td>213</td>
</tr>
<tr>
<td>Ro'sa can'na, described</td>
<td>130</td>
</tr>
<tr>
<td>--- damasce'na</td>
<td>132</td>
</tr>
<tr>
<td>--- Montezu'ma</td>
<td>132</td>
</tr>
<tr>
<td>--- musco'sa</td>
<td>132</td>
</tr>
<tr>
<td>--- provincia'lis</td>
<td>132</td>
</tr>
<tr>
<td>--- rubigin'os'a</td>
<td>131</td>
</tr>
<tr>
<td>Rose, Damask</td>
<td>132</td>
</tr>
<tr>
<td>---, dog, described</td>
<td>130</td>
</tr>
<tr>
<td>---, monthly</td>
<td>132</td>
</tr>
<tr>
<td>---, moss</td>
<td>132</td>
</tr>
<tr>
<td>---, of Paestum</td>
<td>132</td>
</tr>
<tr>
<td>---, Provins</td>
<td>132</td>
</tr>
<tr>
<td>Rose-coloured Balsam-tree</td>
<td>55</td>
</tr>
<tr>
<td>Rosemary</td>
<td>28</td>
</tr>
<tr>
<td>Rosmari'nus officina'lis</td>
<td>28</td>
</tr>
<tr>
<td>Rough Cocks-foot grass, described</td>
<td>41</td>
</tr>
<tr>
<td>Ru'bia tinto'rum</td>
<td>49</td>
</tr>
<tr>
<td>Ru'bus arcticus</td>
<td>134</td>
</tr>
<tr>
<td>--- Chamæmo'rus</td>
<td>133</td>
</tr>
<tr>
<td>--- fructico'sus</td>
<td>133</td>
</tr>
<tr>
<td>--- Idæ'us</td>
<td>133</td>
</tr>
<tr>
<td>Ru'mex Aceto'sa</td>
<td>88, 119</td>
</tr>
<tr>
<td>--- scuta'tus</td>
<td>89</td>
</tr>
<tr>
<td>Rus'cus aculea'tus</td>
<td>43</td>
</tr>
<tr>
<td>Rush, Flowering, described</td>
<td>110</td>
</tr>
<tr>
<td>---, sweet</td>
<td>85</td>
</tr>
</tbody>
</table>

S

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacred Bean of India</td>
<td>154</td>
</tr>
<tr>
<td>Sac'charum officina'rum</td>
<td>37</td>
</tr>
<tr>
<td>Saffron</td>
<td>32, 33</td>
</tr>
<tr>
<td>Saffron-Walden</td>
<td>33</td>
</tr>
<tr>
<td>Sage</td>
<td>28</td>
</tr>
<tr>
<td>---, apple-bearing</td>
<td>102</td>
</tr>
<tr>
<td>---, meadow</td>
<td>28</td>
</tr>
<tr>
<td>Sago</td>
<td>219</td>
</tr>
<tr>
<td>--- palm</td>
<td>219</td>
</tr>
<tr>
<td>Sa'gus Rum'phii</td>
<td>219</td>
</tr>
<tr>
<td>Saintfoin</td>
<td>198</td>
</tr>
<tr>
<td>Sa'lix</td>
<td>224</td>
</tr>
<tr>
<td>--- babylon'ica</td>
<td>225</td>
</tr>
<tr>
<td>--- vimina'lis</td>
<td>225</td>
</tr>
<tr>
<td>Salicor'nia herba'cea</td>
<td>20</td>
</tr>
<tr>
<td>Salop</td>
<td>218</td>
</tr>
<tr>
<td>Salt of Lemon</td>
<td>119</td>
</tr>
<tr>
<td>Sal'via</td>
<td>28</td>
</tr>
<tr>
<td>---, pomif'era</td>
<td>108</td>
</tr>
<tr>
<td>--- praten'sis</td>
<td>29</td>
</tr>
<tr>
<td>--- verben'ica</td>
<td>29</td>
</tr>
<tr>
<td>Sambu'cus Eb'ulus</td>
<td>73</td>
</tr>
<tr>
<td>Samphire</td>
<td>76</td>
</tr>
<tr>
<td>---, marsh</td>
<td>20</td>
</tr>
<tr>
<td>Sap-green</td>
<td>63</td>
</tr>
<tr>
<td>Saranne</td>
<td>97</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Sarracenia</td>
<td>155</td>
</tr>
<tr>
<td>Saxifraga umbrosa</td>
<td>116</td>
</tr>
<tr>
<td>Saxifrage</td>
<td>115</td>
</tr>
<tr>
<td>Scan'dix pec'ten</td>
<td>73</td>
</tr>
<tr>
<td>Scarlet Fuchsia</td>
<td>31</td>
</tr>
<tr>
<td>——— Pimpernel</td>
<td>119</td>
</tr>
<tr>
<td>Scir'pus lacus'tris</td>
<td>41</td>
</tr>
<tr>
<td>Scotch Fir</td>
<td>186</td>
</tr>
<tr>
<td>Sea Kale</td>
<td>178</td>
</tr>
<tr>
<td>——— Lyme grass</td>
<td>36</td>
</tr>
<tr>
<td>——— reed</td>
<td>38</td>
</tr>
<tr>
<td>——— stock</td>
<td>181</td>
</tr>
<tr>
<td>——— tangle</td>
<td>240</td>
</tr>
<tr>
<td>——— weeds</td>
<td>239</td>
</tr>
<tr>
<td>——— wrack</td>
<td>239</td>
</tr>
<tr>
<td>Sedge</td>
<td>44</td>
</tr>
<tr>
<td>Seed-bud</td>
<td>6</td>
</tr>
<tr>
<td>Seeds, described</td>
<td>143, 144</td>
</tr>
<tr>
<td>——— distribution of</td>
<td>146</td>
</tr>
<tr>
<td>Seed-vessels</td>
<td>7, 188, 193</td>
</tr>
<tr>
<td>Semicar'pus anacar'dium</td>
<td>77</td>
</tr>
<tr>
<td>Sempervi'vum tect'o'rum, described</td>
<td>124</td>
</tr>
<tr>
<td>Sene'cio vulga'ris</td>
<td>214</td>
</tr>
<tr>
<td>Senna-tree</td>
<td>120</td>
</tr>
<tr>
<td>Sensitive plant</td>
<td>228</td>
</tr>
<tr>
<td>——— fern</td>
<td>232</td>
</tr>
<tr>
<td>Sessile flowers</td>
<td>102</td>
</tr>
<tr>
<td>Shepherd's needle</td>
<td>73</td>
</tr>
<tr>
<td>——— purse</td>
<td>178</td>
</tr>
<tr>
<td>Shrub</td>
<td>92</td>
</tr>
<tr>
<td>Shipwreck</td>
<td>76</td>
</tr>
<tr>
<td>Shot, Indian</td>
<td>21</td>
</tr>
<tr>
<td>Side-saddle flower</td>
<td>155</td>
</tr>
<tr>
<td>Siliculó'sa, order</td>
<td>14, 178</td>
</tr>
<tr>
<td>Siliquo'sa, order</td>
<td>14, 178</td>
</tr>
<tr>
<td>Simple down</td>
<td>210</td>
</tr>
<tr>
<td>Sina'pis ni'gra</td>
<td>179</td>
</tr>
<tr>
<td>Single flowers</td>
<td>86</td>
</tr>
<tr>
<td>Sisymb'rium Nasturt'ium</td>
<td>179</td>
</tr>
<tr>
<td>St'um latifo'lium</td>
<td>71</td>
</tr>
<tr>
<td>Sleep of Plants</td>
<td>193</td>
</tr>
<tr>
<td>Sloe-tree</td>
<td>135</td>
</tr>
<tr>
<td>Snapdragon</td>
<td>170</td>
</tr>
<tr>
<td>Snow-ball-tree</td>
<td>77</td>
</tr>
<tr>
<td>Snow shoe</td>
<td>157</td>
</tr>
<tr>
<td>Snowdrop, described</td>
<td>82</td>
</tr>
<tr>
<td>Sola'num Dulcama'ra</td>
<td>60</td>
</tr>
<tr>
<td>——— Lycoper'sicu'm</td>
<td>62</td>
</tr>
<tr>
<td>——— Melonge'na</td>
<td>62</td>
</tr>
<tr>
<td>——— ni'grum</td>
<td>60</td>
</tr>
<tr>
<td>——— tubero'sum</td>
<td>59</td>
</tr>
<tr>
<td>Solitary flowers</td>
<td>67</td>
</tr>
<tr>
<td>Son'chus Siber'ica</td>
<td>119</td>
</tr>
<tr>
<td>Sor'bus ancupa'ria</td>
<td>137</td>
</tr>
<tr>
<td>Sorrel</td>
<td>88</td>
</tr>
<tr>
<td>———, French</td>
<td>89</td>
</tr>
<tr>
<td>———, wood</td>
<td>118</td>
</tr>
<tr>
<td>Sow Thistle</td>
<td>119</td>
</tr>
<tr>
<td>Spanish black</td>
<td>107</td>
</tr>
<tr>
<td>Spart'tium scop'a'rium</td>
<td>198</td>
</tr>
<tr>
<td>Species</td>
<td>16</td>
</tr>
<tr>
<td>Specific name</td>
<td>17</td>
</tr>
<tr>
<td>Speedwell, Germander, described</td>
<td>25</td>
</tr>
<tr>
<td>Sphag'num palus'tre</td>
<td>234</td>
</tr>
<tr>
<td>Spruce Fir</td>
<td>187</td>
</tr>
<tr>
<td>Spurge Laurel</td>
<td>31</td>
</tr>
<tr>
<td>——— Olive</td>
<td>102</td>
</tr>
<tr>
<td>Stamen</td>
<td>6</td>
</tr>
<tr>
<td>Starch</td>
<td>35</td>
</tr>
<tr>
<td>Stem</td>
<td>5</td>
</tr>
<tr>
<td>Stems, hollow</td>
<td>40</td>
</tr>
<tr>
<td>Stillin'gia sebif'era</td>
<td>223</td>
</tr>
<tr>
<td>Stock Gilly-flower</td>
<td>181</td>
</tr>
<tr>
<td>———, Sea</td>
<td>181</td>
</tr>
<tr>
<td>Stolonif'erous grasses</td>
<td>34</td>
</tr>
<tr>
<td>Strawberry</td>
<td>136</td>
</tr>
<tr>
<td>——— tree</td>
<td>114</td>
</tr>
<tr>
<td>——— black-berried</td>
<td>115</td>
</tr>
<tr>
<td>Strelit'zia Regi'na</td>
<td>167</td>
</tr>
<tr>
<td>Strob'ile</td>
<td>188</td>
</tr>
<tr>
<td>Style</td>
<td>6</td>
</tr>
<tr>
<td>Sugar</td>
<td>37</td>
</tr>
<tr>
<td>——— Cane</td>
<td>37</td>
</tr>
<tr>
<td>——— of Grapes</td>
<td>38</td>
</tr>
<tr>
<td>Maple-tree</td>
<td>103</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Sumach-tree</td>
<td>77</td>
</tr>
<tr>
<td>Summit</td>
<td>6</td>
</tr>
<tr>
<td>Sun-flower</td>
<td>214</td>
</tr>
<tr>
<td>Superior blossom</td>
<td>67</td>
</tr>
<tr>
<td>Sweet Bay-tree</td>
<td>111</td>
</tr>
<tr>
<td>--- briar</td>
<td>131</td>
</tr>
<tr>
<td>--- pea</td>
<td>198</td>
</tr>
<tr>
<td>--- rush</td>
<td>85</td>
</tr>
<tr>
<td>--- William</td>
<td>116</td>
</tr>
<tr>
<td>Swiet'nia Mahog'ani</td>
<td>121</td>
</tr>
<tr>
<td>Sycamore-tree</td>
<td>103</td>
</tr>
<tr>
<td>Syngene'sia</td>
<td>11. 209</td>
</tr>
<tr>
<td>Syrin'ga vulga'ris</td>
<td>28</td>
</tr>
<tr>
<td>System of Linnaeus</td>
<td>9. 163</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tage'tes erec'ta</td>
<td>119</td>
</tr>
<tr>
<td>Tallow-tree</td>
<td>223</td>
</tr>
<tr>
<td>Tamarind-tree</td>
<td>183</td>
</tr>
<tr>
<td>Tamarin' dus in'dica</td>
<td>183</td>
</tr>
<tr>
<td>Tamarisk-tree</td>
<td>77</td>
</tr>
<tr>
<td>Tam'arix gal'lica</td>
<td>77</td>
</tr>
<tr>
<td>Tanace'tum vulga're</td>
<td>214</td>
</tr>
<tr>
<td>Tansy</td>
<td>214</td>
</tr>
<tr>
<td>Tax'us bacca' ta</td>
<td>185</td>
</tr>
<tr>
<td>Tea-tree</td>
<td>150</td>
</tr>
<tr>
<td>---, Imperial</td>
<td>152</td>
</tr>
<tr>
<td>Teak-wood</td>
<td>77</td>
</tr>
<tr>
<td>Teasel, Clothiers'</td>
<td>48</td>
</tr>
<tr>
<td>Tec'tona grand' dis</td>
<td>77</td>
</tr>
<tr>
<td>Tendrils</td>
<td>92</td>
</tr>
<tr>
<td>Tetradyna'mia</td>
<td>11. 177</td>
</tr>
<tr>
<td>Tetragn'ia</td>
<td>13</td>
</tr>
<tr>
<td>Tetran'dria</td>
<td>10. 45</td>
</tr>
<tr>
<td>The'a Bohe'a</td>
<td>150</td>
</tr>
<tr>
<td>--- vir'idis</td>
<td>151</td>
</tr>
<tr>
<td>Theobro' ma Caca'o</td>
<td>203</td>
</tr>
<tr>
<td>Thistle</td>
<td>214</td>
</tr>
<tr>
<td>Thlas'pi Bursa-pasto'ris</td>
<td>178</td>
</tr>
<tr>
<td>Thorns</td>
<td>135</td>
</tr>
<tr>
<td>Til'ia europae'a</td>
<td>154</td>
</tr>
<tr>
<td>Tobacco</td>
<td>68. 143</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomato</td>
<td>62</td>
</tr>
<tr>
<td>Tomberongs</td>
<td>64</td>
</tr>
<tr>
<td>Touch-wood</td>
<td>159</td>
</tr>
<tr>
<td>Traveller's Joy</td>
<td>155</td>
</tr>
<tr>
<td>Treble flowers</td>
<td>87</td>
</tr>
<tr>
<td>Tree</td>
<td>94</td>
</tr>
<tr>
<td>Trefoils</td>
<td>196</td>
</tr>
<tr>
<td>Trembling Poplar-tree</td>
<td>105</td>
</tr>
<tr>
<td>Trienta'lis europae'a</td>
<td>98</td>
</tr>
<tr>
<td>Trigyn'ia</td>
<td>13</td>
</tr>
<tr>
<td>Triphyll'ous calyx</td>
<td>23</td>
</tr>
<tr>
<td>Trifidicum hyber'num</td>
<td>35</td>
</tr>
<tr>
<td>--- re'pens</td>
<td>36</td>
</tr>
<tr>
<td>Trivial name</td>
<td>17</td>
</tr>
<tr>
<td>Tropical plants</td>
<td>95</td>
</tr>
<tr>
<td>Tube of the blossom</td>
<td>24</td>
</tr>
<tr>
<td>Tulip, garden</td>
<td>15. 86</td>
</tr>
<tr>
<td>--- tree</td>
<td>155</td>
</tr>
<tr>
<td>---, wild</td>
<td>86</td>
</tr>
<tr>
<td>Tu'lipa Gesneria'na</td>
<td>86</td>
</tr>
<tr>
<td>--- sylves'tris</td>
<td>86</td>
</tr>
<tr>
<td>Turmeric</td>
<td>21</td>
</tr>
<tr>
<td>Turnip</td>
<td>38. 96. 178</td>
</tr>
<tr>
<td>Turpentine</td>
<td>188</td>
</tr>
<tr>
<td>Tussila'go far'fara</td>
<td>214</td>
</tr>
<tr>
<td>--- Petasi'tes</td>
<td>167</td>
</tr>
<tr>
<td>Tutsan, described</td>
<td>202</td>
</tr>
<tr>
<td>Ty'pha major</td>
<td>143</td>
</tr>
</tbody>
</table>

U

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U'lex europae'us</td>
<td>198</td>
</tr>
<tr>
<td>Ul'imus americ'a'na</td>
<td>75</td>
</tr>
<tr>
<td>--- campes'tris</td>
<td>75</td>
</tr>
<tr>
<td>Umbel</td>
<td>70</td>
</tr>
<tr>
<td>Umbell'late plants</td>
<td>70</td>
</tr>
<tr>
<td>Umbellifer'ous plants</td>
<td>70</td>
</tr>
<tr>
<td>Umbellule</td>
<td>70</td>
</tr>
<tr>
<td>Under-shrub</td>
<td>94</td>
</tr>
<tr>
<td>Uses of Botany</td>
<td>3, 4</td>
</tr>
<tr>
<td>--- leaves</td>
<td>168</td>
</tr>
<tr>
<td>Page</td>
<td>Item</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>104</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Vaccinium formosum</td>
</tr>
<tr>
<td></td>
<td>---- Macrocarpon</td>
</tr>
<tr>
<td></td>
<td>---- Myrtillus</td>
</tr>
<tr>
<td></td>
<td>---- Oxyccos</td>
</tr>
<tr>
<td></td>
<td>Varieties of plants</td>
</tr>
<tr>
<td></td>
<td>Varnish Sumach-tree</td>
</tr>
<tr>
<td></td>
<td>Vegetable egg</td>
</tr>
<tr>
<td></td>
<td>Veil of Mosses</td>
</tr>
<tr>
<td></td>
<td>Venice Turpentine</td>
</tr>
<tr>
<td></td>
<td>Verbe'na officinalis</td>
</tr>
<tr>
<td></td>
<td>---- triphylla</td>
</tr>
<tr>
<td></td>
<td>Verjuice</td>
</tr>
<tr>
<td></td>
<td>Vernal Carex</td>
</tr>
<tr>
<td></td>
<td>---- grass</td>
</tr>
<tr>
<td></td>
<td>Veroni'ca Chamaed'ry's, described</td>
</tr>
<tr>
<td></td>
<td>Vervain</td>
</tr>
<tr>
<td></td>
<td>Vetch</td>
</tr>
<tr>
<td></td>
<td>Vibur'num Op'ulus</td>
</tr>
<tr>
<td></td>
<td>---- Tinus</td>
</tr>
<tr>
<td></td>
<td>Vic'ia Fa'ba</td>
</tr>
<tr>
<td></td>
<td>Vin'ca</td>
</tr>
<tr>
<td></td>
<td>Vine</td>
</tr>
<tr>
<td></td>
<td>Vi'ola odor'a ta</td>
</tr>
<tr>
<td></td>
<td>---- tric'olor</td>
</tr>
<tr>
<td></td>
<td>Violet</td>
</tr>
<tr>
<td></td>
<td>Virgin's bower</td>
</tr>
<tr>
<td></td>
<td>Vis'cum al'bum</td>
</tr>
<tr>
<td></td>
<td>Vi'tis vinif'era</td>
</tr>
<tr>
<td></td>
<td>Vivip'arous grasses</td>
</tr>
<tr>
<td>185</td>
<td>THE END.</td>
</tr>
<tr>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>---- Yellow water-lily</td>
</tr>
<tr>
<td></td>
<td>---- Yew-tree</td>
</tr>
<tr>
<td></td>
<td>Z</td>
</tr>
<tr>
<td>219</td>
<td>Ze'a, Mays</td>
</tr>
<tr>
<td>21</td>
<td>Z't'ger officinalis</td>
</tr>
<tr>
<td>21</td>
<td>Zoste'ra marina</td>
</tr>
<tr>
<td>61</td>
<td>Woody night-shade</td>
</tr>
<tr>
<td>118</td>
<td>Wood-sorrel</td>
</tr>
<tr>
<td>69</td>
<td>Woodbine</td>
</tr>
<tr>
<td>199</td>
<td>Woad</td>
</tr>
<tr>
<td>126</td>
<td>Wild Liquorice</td>
</tr>
<tr>
<td>198</td>
<td>Reseda</td>
</tr>
<tr>
<td>103</td>
<td>Whortle-berry</td>
</tr>
<tr>
<td>224</td>
<td>Willows</td>
</tr>
<tr>
<td>86</td>
<td>Wild Tulip</td>
</tr>
<tr>
<td>155</td>
<td>Wolf's-bane</td>
</tr>
<tr>
<td>198</td>
<td>Witv'num</td>
</tr>
<tr>
<td>118</td>
<td>Wood-sorrel</td>
</tr>
<tr>
<td>178</td>
<td>Whitlow grass</td>
</tr>
<tr>
<td>153</td>
<td>Water-lily</td>
</tr>
<tr>
<td>222</td>
<td>Water-proof cloth</td>
</tr>
<tr>
<td>71</td>
<td>Water-cress</td>
</tr>
<tr>
<td>71</td>
<td>Water-cowbane</td>
</tr>
<tr>
<td>179</td>
<td>hemlock</td>
</tr>
<tr>
<td>153</td>
<td>lily</td>
</tr>
<tr>
<td>65</td>
<td>mouse-ear, described</td>
</tr>
<tr>
<td>71</td>
<td>parsnip</td>
</tr>
<tr>
<td>77</td>
<td>Vernal Carex</td>
</tr>
<tr>
<td>27</td>
<td>White Pepper</td>
</tr>
<tr>
<td>62</td>
<td>Vegetable egg</td>
</tr>
<tr>
<td>35</td>
<td>Wheat</td>
</tr>
<tr>
<td>126</td>
<td>Weeping Willow</td>
</tr>
<tr>
<td>103</td>
<td>Wild Liquorice</td>
</tr>
<tr>
<td>199</td>
<td>Weed, Dyers'</td>
</tr>
<tr>
<td>189</td>
<td>Yellog water-lily</td>
</tr>
<tr>
<td>155</td>
<td>Wolf's-bane</td>
</tr>
<tr>
<td>185</td>
<td>Yew-tree</td>
</tr>
<tr>
<td>21</td>
<td>Z't'ger officinalis</td>
</tr>
<tr>
<td>219</td>
<td>Ze'a, Mays</td>
</tr>
<tr>
<td>21</td>
<td>Zoste'ra marina</td>
</tr>
</tbody>
</table>